【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則△OAC與△BAD的面積之差SOAC﹣SBAD為(

A.36
B.12
C.6
D.3

【答案】D
【解析】解:設(shè)△OAC和△BAD的直角邊長(zhǎng)分別為a、b,
則點(diǎn)B的坐標(biāo)為(a+b,a﹣b).
∵點(diǎn)B在反比例函數(shù)y= 的第一象限圖象上,
∴(a+b)×(a﹣b)=a2﹣b2=6.
∴SOAC﹣SBAD= a2 b2= (a2﹣b2)= ×6=3.
故選D.
設(shè)△OAC和△BAD的直角邊長(zhǎng)分別為a、b,結(jié)合等腰直角三角形的性質(zhì)及圖象可得出點(diǎn)B的坐標(biāo),根據(jù)三角形的面積公式結(jié)合反比例函數(shù)系數(shù)k的幾何意義以及點(diǎn)B的坐標(biāo)即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖所示,則下列4個(gè)結(jié)論::①b2﹣4ac<0;②2a﹣b=0;③a+b+c<0;④點(diǎn)M(x1 , y1)、N(x2 , y2)在拋物線上,若x1<x2 , 則y1≤y2 , 其中正確結(jié)論的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:
①ac<0 ②2a+b=0 ③4a+2b+c>0 ④對(duì)任意實(shí)數(shù)x均有ax2+bx≥a+b
正確的結(jié)論序號(hào)為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以x為自變量的二次函數(shù)y=﹣x2+(2m+2)x﹣(m2+4m﹣3)中,m為不小于0的整數(shù),它的圖象與x軸的交點(diǎn)A在原點(diǎn)左邊,交點(diǎn)B在原點(diǎn)右邊.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)C為此二次函數(shù)圖象上的一點(diǎn),且滿足△ABC的面積等于10,請(qǐng)求出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小金魚(yú)在直角坐標(biāo)系中的位置如圖所示,根據(jù)圖形解答下面的問(wèn)題:

(1)分別寫(xiě)出小金魚(yú)身上點(diǎn)A,B,C,D,E,F(xiàn)的坐標(biāo);

(2)小金魚(yú)身上的點(diǎn)的縱坐標(biāo)都乘以-1,橫坐標(biāo)不變,作出相應(yīng)圖形,它與原圖案相比有哪些變化?

(3)小金魚(yú)身上的點(diǎn)的橫坐標(biāo)都乘-1,所得圖形與原圖形相比有哪些變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,弦AB所對(duì)的劣弧是圓周長(zhǎng)的 ,其中圓的半徑為4cm,求:

(1)求AB的長(zhǎng).
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點(diǎn)A1、A2、A3,…和點(diǎn)B1、B2、B3,…分別在直線軸上.已知C1(1,-1),C2, ),則點(diǎn)A3的坐標(biāo)是________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是真命題的是( )

A. a2=b2,a=b B. 若∠1+∠2=90,則∠1與∠2互余

C. 若∠α與∠β是同位角,則∠α=∠β D. a⊥b,b⊥c,則a⊥c

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數(shù)是(

A.110°
B.80°
C.40°
D.30°

查看答案和解析>>

同步練習(xí)冊(cè)答案