一個口袋中有3個大小相同的小球,球面上分別寫有數(shù)字1、2、3,從袋中隨機地摸出一個小球,記錄下數(shù)字后放回,再隨機地摸出一個小球.
(1)請用樹形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;
(2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.
考點:列表法與樹狀圖法
專題:
分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;
(2)由(1)可求得兩次摸出的球上的數(shù)字和為偶數(shù)的有5種情況,再利用概率公式即可求得答案.
解答:解:(1)畫樹狀圖得:

則共有9種等可能的結(jié)果;

(2)由(1)得:兩次摸出的球上的數(shù)字和為偶數(shù)的有5種情況,
∴兩次摸出的球上的數(shù)字和為偶數(shù)的概率為:
5
9
點評:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x的一元二次方程x2-6x+2k=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計算:
9
+|-1|-(
3
-1)0
(2)解方程:
3
x-1
=
2
x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在?ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結(jié)BE,DF.
(1)求證:△DOE≌△BOF;
(2)當(dāng)∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2+bx+c的圖象與x軸的正半軸交于A(x1,0)、B(x2,0)兩點(點A在點B的左側(cè)),與y軸交于點C.點A和點B間的距離為2,若將二次函數(shù)y=ax2+bx+c的圖象沿y軸向上平移3個單位時,則它恰好過原點,且與x軸兩交點間的距離為4.
(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;
(2)在二次函數(shù)y=ax2+bx+c的圖象的對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出點P坐標(biāo);若不存在,請說明理由;
(3)設(shè)二次函數(shù)y=ax2+bx+c的圖象的頂點為D,在x軸上是否存在這樣的點F,使得∠DFB=∠DCB?若存在,求出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O為△ABC的內(nèi)切圓.
(1)求⊙O的半徑;
(2)點P從點B沿邊BA向點A以1cm/s的速度勻速運動,以P為圓心,PB長為半徑作圓,設(shè)點P運動的時間為t s,若⊙P與⊙O相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠ACB=90°,AC=BC,點P為△ABC外一點(P與C在直線AB異側(cè)),且∠APB=45°,過點C作CD⊥PA,垂足為D.

(1)求證:PA=2CD;
(2)設(shè)點P關(guān)于AB的對稱點為E,連接PE、CE,試判定線段AB與CE的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知多項式A=(x+2)2+(1-x)(2+x)-3.
(1)化簡多項式A;
(2)若(x+1)2=6,求A的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC中,已知∠A=60°,∠B=80°,則∠C的外角的度數(shù)是
 
°.

查看答案和解析>>

同步練習(xí)冊答案