如圖,在梯形ABCD中,AD∥BC,BC=2AD,點F、G分別是邊BC、CD的中點,連接AF、FG,過點D作DE∥FG交AF于點E。

   (1)求證:△AED≌△CGF;

   (2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論;

(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為       (平方單位)。(只寫結(jié)果,不必說理)

 


(1)證明:∵BC=2AD,點F為BC的中點,∴CF=AD。

又∵AD∥BC,∴四邊形AFCD是平行四邊形,             

∠DAE=∠C,AF∥DC,∴∠AFG=∠CGF!逥E∥GF,

∴∠AED=∠AFG,∴∠AED=∠CGF∴△AED≌△CGF。

(2)結(jié)論:四邊形DEFG是菱形。證明如下:連接DF。

由(1)得AF∥DC,又∵DE∥GF,∴四邊形DEFG是平行四邊形。

∵AD∥BC,AD=BF=BC∴四邊形ABFD是平行四邊形,又∵∠B=90°,

∴四邊形ABFD是矩形,∴∠DFC=90°!唿cG是CD的中點,

∴FG=DG=CD,∴四邊形DEFG是菱形。 

(3) ɑ       

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案