如圖,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:
(1)ctan30°=______
【答案】分析:(1)根據(jù)直角三角形的性質(zhì)用AC表示出AB及AC的值,再根據(jù)銳角三角函數(shù)的定義進行解答即可;
(2)由于tanA=,所以可設(shè)BC=3,AC=4,則AB=5,再根據(jù)銳角三角函數(shù)的定義進行解答即可.
解答:解:(1)∵Rt△ABC中,α=30°,
∴BC=AB,
∴AC===AB,
∴cot30°==
故答案為:;

(2)∵tanA=,
∴設(shè)BC=3,AC=4,
∴cotA==
點評:本題考查的是銳角三角函數(shù)的定義及直角三角形的性質(zhì),熟知銳角三角函數(shù)的定義是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
b
sinB
=
c
sinC

這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,精英家教網(wǎng)過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=
AD
AB
,則AD=csinB
Rt△ACD中,sinC=
AD
AC
,則AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種(  )
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.

  結(jié)論:在探討過程中,有三位同學得出如下結(jié)果:

       甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內(nèi)接正方形.

       乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.

       丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.

任務(wù):(1)填充甲同學結(jié)論中的數(shù)據(jù);

       (2)乙同學的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結(jié)合(2)的判定,推測丙同學的結(jié)論是否正確,并證明。

(如圖,設(shè)銳角△ABC的三條邊分別為不妨設(shè),三條邊上的對應(yīng)高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結(jié)論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結(jié)論:在探討過程中,有三位同學得出如下結(jié)果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.
任務(wù):(1)填充甲同學結(jié)論中的數(shù)據(jù);
(2)乙同學的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結(jié)合(2)的判定,推測丙同學的結(jié)論是否正確,并證明
(如圖,設(shè)銳角△ABC的三條邊分別為不妨設(shè),三條邊上的對應(yīng)高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結(jié)論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(江西卷)數(shù)學 題型:解答題

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結(jié)論:在探討過程中,有三位同學得出如下結(jié)果:
甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、________個、________個大小不同的內(nèi)接正方形.
乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.
任務(wù):(1)填充甲同學結(jié)論中的數(shù)據(jù);
(2)乙同學的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;
(3)請你結(jié)合(2)的判定,推測丙同學的結(jié)論是否正確,并證明
(如圖,設(shè)銳角△ABC的三條邊分別為不妨設(shè),三條邊上的對應(yīng)高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用”這個結(jié)論,但在證明正確的情況下扣1分).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省江陰市九年級上學期期中考試數(shù)學卷 題型:解答題

某課題學習小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:

  定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.

  結(jié)論:在探討過程中,有三位同學得出如下結(jié)果:

        甲同學:在鈍角、直角、不等邊銳角三角形中分別存在____個、____個、_____個大小不同的內(nèi)接正方形.

        乙同學:在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.

        丙同學:在不等邊銳角三角形中,兩個頂點都在較大邊上的內(nèi)接正方形的面積反而較小.

任務(wù):(1)填充甲同學結(jié)論中的數(shù)據(jù);

       (2)乙同學的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明;

       (3)請你結(jié)合(2)的判定,推測丙同學的結(jié)論是否正確,并證明。

(如圖,設(shè)銳角△ABC的三條邊分別為不妨設(shè),三條邊上的對應(yīng)高分別為,內(nèi)接正方形的邊長分別為.若你對本小題證明有困難,可直接用“”這個結(jié)論,但在證明正確的情況下扣1分).

 

查看答案和解析>>

同步練習冊答案