【題目】如圖,點(diǎn)C、D在線段AB上,且△PCD是等邊三角形.∠APB=120°.

(1)求證:△ACP∽△PDB;

(2)證明:

【答案】(1)見(jiàn)解析 (2)6

【解析】

1)根據(jù)等邊三角形的性質(zhì)得到∠PCD=PDC=CPD=60°,于是推出∠ACP=PDB=120°,等量代換得到∠BPD=CAP,根據(jù)相似三角形的性質(zhì)得到結(jié)論;

2)由相似三角形的性質(zhì)得到,根據(jù)等邊三角形的性質(zhì)得到PC=PD=CD,等量代換得到,即可得到結(jié)論.

證明:(1)∵△PCD是等邊三角形,

∴∠PCD=PDC=CPD=60°,

∴∠ACP=PDB=120°,

∵∠APB=120°,

∴∠APC+BPD=60°,

∵∠CAP+APC=60°

∴∠BPD=CAP

∴△ACP∽△PDB;

(2)(1)得△ACP∽△PDB,

∵△PCD是等邊三角形,

PC=PD=CD

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸相交于A(3,0)B(1,0)兩點(diǎn),y軸相交于點(diǎn)C(0,3),點(diǎn)C.D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B. D.

(1)D點(diǎn)坐標(biāo);

(2)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍

(3)求二次函數(shù)的解析式及頂點(diǎn)坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.

(1)求證:PA是⊙O的切線;

(2)若OH⊥AC,OH=1,求DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家客廳里裝有一種三位單極開(kāi)關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,按下任意一個(gè)開(kāi)關(guān)均可打開(kāi)對(duì)應(yīng)的一盞電燈,因剛搬進(jìn)新房不久,不熟悉情況.

1)若小明任意按下一個(gè)開(kāi)關(guān),則下列說(shuō)法正確的是   

A.小明打開(kāi)的一定是樓梯燈

B.小明打開(kāi)的可能是臥室燈

C.小明打開(kāi)的不可能是客廳燈

D.小明打開(kāi)走廊燈的概率是

2)若任意按下一個(gè)開(kāi)關(guān)后,再按下另兩個(gè)開(kāi)關(guān)中的一個(gè),則正好客廳燈和走廊燈同時(shí)亮的概率是多少?請(qǐng)用樹(shù)狀圖法或列表法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論;

(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請(qǐng)判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫(xiě)出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過(guò)三個(gè)景點(diǎn)ABC,景區(qū)管委會(huì)又開(kāi)發(fā)了風(fēng)景優(yōu)美的景點(diǎn)D,經(jīng)測(cè)量景點(diǎn)D位于景點(diǎn)A的北偏東30°方向8km處,位于景點(diǎn)B的正北方向,還位于景點(diǎn)C的北偏西75°方向上,已知AB=5km

1)景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)D向公路a修建一條距離最短的公路,不考慮其它因素,求出這條公路的長(zhǎng);(結(jié)果精確到0.1km

2)求景點(diǎn)C與景點(diǎn)D之間的距離.(結(jié)果精確到1km

(參考數(shù)據(jù): =1.73, =2.24,sin53°=cos37°=0.80sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62sin52°=cos38°=0.79,tan38°=0.78tan52°=1.28,sin75°=0.97cos75°=0.26,tan75°=3.73.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,⊙O是△ABC的內(nèi)切圓,三個(gè)切點(diǎn)分別為D、E、F,若BF2,AF3,則△ABC的面積是

A.6B.7C.D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),點(diǎn)FBC邊上,連接DEDF、EF,則添加下列哪一個(gè)條件后,仍無(wú)法判斷△FCE△EDF全等( )

A. ∠A=∠DFE B. BF=CF C. DF∥AC D. ∠C=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面直角坐標(biāo)系中,直線y=x+2x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)C


1)求A,B,C三點(diǎn)的坐標(biāo);
2)求△AOC的面積;
3)已知點(diǎn)Px軸正半軸上的一點(diǎn),若△COP是等腰三角形,直接寫(xiě)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案