【題目】用四個長為m,寬為n的相同長方形按如圖方式拼成一個正方形.

1)根據圖形寫出一個代數(shù)恒等式:   ;

2)已知3m+n9mn6,試求3mn的值;

3)若m+n1,求m2+n2的最小值.

【答案】1)(mn2=(m+n24mn;(245;(3m2+n2的最小值為

【解析】

1)直接用陰影正方形邊長的平方可求陰影面積,用大正方形面積減四個小長方形的面積可求陰影面積,可得等量關系;

2)先根據完全平方公式變形,然后代入計算;

3)由m2+n2=1-n2+n2=2n-2+,可求m2+n2的最小值.

1直接用陰影正方形邊長的平方可求陰影面積=(mn2,用大正方形面積減四個小長方形的面積可求陰影面積=(m+n24mn,

mn2=(m+n24mn

23mn2=(3m+n26mn,

3mn2813645

3m+n1,

m1n,

m2+n2=(1n2+n21+2n22n2n2+,

m2+n2的最小值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如圖1,在ABC看,把ABA順時針旋轉α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉β得到AC',連接B'C'.當α+β=180°時,我們稱A'B'C'ABC旋補三角形”,AB'C'B'C'上的中線AD叫做ABC旋補中線,點A叫做旋補中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補三角形”,ADABC旋補中線”.

①如圖2,當ABC為等邊三角形時,ADBC的數(shù)量關系為AD=   BC;

②如圖3,當∠BAC=90°,BC=8時,則AD長為   

猜想論證:

(2)在圖1中,當ABC為任意三角形時,猜想ADBC的數(shù)量關系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一些相同的房間需要粉刷墻面.一天3名一級技工去粉刷8個房間,結果其中有40m2墻面未來得及粉刷;同樣時間內5名二級技工剛好粉刷了10個房間,每名一級技工比二級技工一天多粉刷20m2墻面.

1)一級技工和二級技工每人每天各粉刷多少墻面?

2)現(xiàn)有若干間這樣的房間需要在規(guī)定的時間內粉刷完墻面,若安排一名一級技工單獨粉刷,可比規(guī)定時間提前1天完成;若安排一名二級技工單獨完成,到規(guī)定時間還有4間房間沒粉刷.需要粉刷的房間一共有多少間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圖中網格上按要求畫出圖形,并回答問題:

1)如果將三角形平移,使得點平移到圖中點位置,點、點的對應點分別為點、點,請畫出三角形

2)畫出三角形關于點成中心對稱的三角形

3)三角形與三角形______(填“是”或“否”)關于某個點成中心對稱?如果是,請在圖中畫出這個對稱中心,并記作點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12,OC邊長為3.

(1)數(shù)軸上點A表示的數(shù)為 .

(2)將長方形OABC沿數(shù)軸水平移動,移動后的長方形記為OABC,移動后的長方形OABC與原長方形OABC重疊部分(如圖8中陰影部分)的面積記為S.

①當S恰好等于原長方形OABC面積的一半時,數(shù)軸上點A表示的數(shù)是 .

②設點A的移動距離AA'=x

()S4時,求x的值;

()D為線段AA的中點,點E在找段OO'上,且OO'=3OE,當點D,E所表示的數(shù)互為相反數(shù)時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校的春季趣味運動會深受學生喜愛,該校體育教師為了了解該次運動會中四個項目的受歡迎程度,隨機抽取了部分學生進行問卷調查,被調查學生須從托球跑、擲飛盤、推小車、鴨子步四個項目中選擇自己最喜歡的一項.

根據調查結果,體育教師繪制了圖1和圖2兩個統(tǒng)計圖(均未完成),請根據圖1和圖2的信息,解答下列問題.

(1)此次共調查了多少名學生?

(2)將條形統(tǒng)計圖補充完整.

(3)2鴨子步所在扇形圓心角為多少度?

(4)若全校有學生1600人,估計該校喜歡推小車項目的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將圖①中的正方形剪開得到圖②,圖②中共有4個正方形;將圖②中的一個正方形剪開得到圖③,圖③中共有7個正方形;將圖③中的一個正方形剪開得到圖④,圖④中共有10個正方形……如此下去,則第2019個圖中共有正方形的個數(shù)為( ).

A.6052B.6055C.6058D.6061

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD的對角線AC=8,BD=6,且,P、Q、R、S分別是AB、BCCD、DA的中點,則PR2+QS2的值是__________

查看答案和解析>>

同步練習冊答案