【題目】解方程
(1)2x﹣3(x+2)=5x﹣2(x﹣1);
(2)﹣+1=.
【答案】(1)x=﹣2;(2)x=.
【解析】
(1)先去括號、移項得2x﹣3x﹣5x+2x=2+6,然后合并后把x的系數化為1即可;
(2)先去分母得﹣5(x﹣1)+15=3(2x﹣3),再去括號、移項得﹣5x﹣6x=﹣9﹣5﹣15,然后合并后把x的系數化為1即可.
解:(1)去括號,得2x﹣3x﹣6=5x﹣2x+2,
移項,得2x﹣3x﹣5x+2x=2+6,
合并同類項,得﹣4x=8,
系數化為1,得x=﹣2.
(2)去分母得﹣5(x﹣1)+15=3(2x﹣3),
去括號,得﹣5x+5+15=6x﹣9,
移項,得﹣5x﹣6x=﹣9﹣5﹣15,
合并同類項,得﹣11x=﹣29,
系數化為1,得x=.
科目:初中數學 來源: 題型:
【題目】在研究位似問題時,甲、乙同學的說法如下:
甲:如圖①,已知矩形ABCD和矩形EFGO在平面直角坐標系中,點B,F的坐標分別為(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點P(點P在GC上)是位似中心,則點P的坐標為(0,2).
圖① 圖②
乙:如圖②,正方形網格中,每個小正方形的邊長是1個單位長度,以點C為位似中心,在網格中畫△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,則點B1的坐標為(4,0).
對于兩人的觀點,下列說法正確的是( )
A. 兩人都對 B. 兩人都不對 C. 甲對乙不對 D. 甲不對乙對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標分別為、3,與y軸負半軸交于點C,在下面四個結論中:
①;②;只有當時,是等腰直角三角形;其中正確的結論是__________請把正確結論的序號都填上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校課外興趣小組在本校學生中開展“感動中國2013年度人物”先進事跡知曉情況專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數據整理如下表:
類別 | A | B | C | D |
頻數 | 30 | 40 | 24 | b |
頻率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= ,b= ;
(2)根據表中數據,求扇形統(tǒng)計圖中類別為B的學生數所對應的扇形圓心角的度數;
(3)若該校有學生1000名,根據調查結果估計該校學生中類別為C的人數約為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點O為直線AB上一點,過點O作射線OC,使∠AOC:∠BOC=2:1,將一直角的頂點放在點O處,∠MON=90°.
(1)如圖1,當∠MON的一邊OM與射線OB重合時,則∠NOC=_________;
(2)將∠MON繞點O逆時針運動至圖2時,若∠MOC=15°,則∠BOM=______;∠AON=_______.
(3)在上述∠MON從圖1運動到圖3的位置過程中,當∠MON的邊OM所在直線恰好平分∠AOC時,求此時∠NOC是多少度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設A、B、C是數軸上的三個點,且點C在A、B之間,它們對應的數分別為xA、xB、xC.
(1)若AC=CB,則點C叫做線段AB的中點,已知C是AB的中點.
①若xA=1,xB=5,則xc= ;
②若xA=﹣1,xB=﹣5,則xC= ;
③一般的,將xC用xA和xB表示出來為xC= ;
④若xC=1,將點A向右平移5個單位,恰好與點B重合,則xA= ;
(2)若AC=λCB(其中λ>0).
①當xA=﹣2,xB=4,λ=時,xC= .
②一般的,將xC用xA、xB和λ表示出來為xC= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD為⊙O的直徑,點A是弧BC的中點,AD交BC于E點,AE=2,ED=4.
(1)求證: ~△ADB;
(2) 求的值;
(3)延長BC至F,連接FD,使的面積等于,求證:DF與⊙O相切。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店第一次用300元購進筆記本若干,第二次又用300元購進該款筆記本,但這次每本的進價是第一次進價的倍,購進數量比第一次少了25本.
(1)求第一次每本筆記本的進價是多少元?
(2)若要求這兩次購進的筆記本按同一價格全部銷售完畢后獲利不低于450元,問每本筆記本的售價至少是多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com