如圖,正方形ABCD中,AB=(單位:cm),點(diǎn)E、M分別是線段AC,CD上的動(dòng)點(diǎn),連結(jié)DE并延長交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N。點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),點(diǎn)E從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為(>0);下列判斷正確的是:( )
①當(dāng)M不動(dòng),E運(yùn)動(dòng)時(shí),;
②當(dāng)M,E同時(shí)出發(fā)時(shí),且時(shí),點(diǎn)M是邊CD的三等分點(diǎn);
③當(dāng)M,E同時(shí)出發(fā)時(shí),且
④當(dāng)M,E同時(shí)出發(fā)后,或時(shí),為等腰三角形;
A.①②④ B.①③ C.①②③ D①②③④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
一次函數(shù)y=ax+b(a≠0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=k/x在同一直角坐標(biāo)系中的圖像如圖所示,A點(diǎn)的坐標(biāo)為(-2,0),則下列結(jié)論中,正確的是 ( )
A.b=2a+k B.a(chǎn)=b+k C.a(chǎn)>b>0 D.a(chǎn)>k>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
多項(xiàng)式加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)二項(xiàng)整式的完全平方,則滿足條件
的單項(xiàng)式有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
觀察與思考:閱讀下列材料,并解決后面的問題.
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作
AD⊥BC于D(如圖),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,
所以
即:在一個(gè)三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個(gè)元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個(gè)未知元素.根據(jù)上述材料,完成下列各題.
(1)如圖,△ABC中,∠B=450,∠C=750,BC=60,則∠A= ;AC= ;
(2)如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時(shí)貨輪距燈塔A的距離AB及燈塔A距C處的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一個(gè)幾何體的主視圖和左視圖都是底邊長為6,高為4的等腰三角形,俯視圖是一個(gè)圓,那么這個(gè)幾何體的側(cè)面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形的頂點(diǎn)在反比例函數(shù)的圖像上,頂點(diǎn)分別在軸,軸的正半軸上,再在其右側(cè)作正方形,頂點(diǎn)在反比例函數(shù)的圖像上,頂點(diǎn)在軸的正半軸上,則點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(6,0),點(diǎn)B(0,6),動(dòng)點(diǎn)C在以半徑為3的⊙O上,連接OC,過O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D(其中點(diǎn)C、O、D按逆時(shí)針方向排列),連接AB.
(1)當(dāng)OC∥AB時(shí),∠BOC的度數(shù)為 ;
(2)連接AC,BC,當(dāng)點(diǎn)C在⊙O上運(yùn)動(dòng)到什么位置時(shí),△ABC的面積最大?并求出△ABC的面積的最大值.
(3)連接AD,當(dāng)OC∥AD時(shí),
①求出點(diǎn)C的坐標(biāo);②直線BC是否為⊙O的切線?請作出判斷,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,正方形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(4,4),反比例函數(shù)的圖象經(jīng)過CB的中點(diǎn)D,若點(diǎn)P(x,y)在該反比例函數(shù)的圖像上運(yùn)動(dòng)(不與點(diǎn)D重合),過點(diǎn)P作PR⊥y軸于點(diǎn)R,作PQ⊥BC所在直線于點(diǎn)Q,記四邊形CQPR的面積為S=4時(shí),x的值為 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com