【題目】已知在平面直角坐標系xOy中,O是坐標原點,以P(1,1)為圓心的⊙P與x軸、y軸分別相切于點M和點N,點F從點M出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,連接PF,過點P作PE⊥PF交y軸于點E,設(shè)點F運動的時間是t秒(t>0)
(1)若點E在y軸的負半軸上(如圖所示),求證:PE=PF;
(2)在點F運動過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;
(3)作點F關(guān)于點M的對稱點F′,經(jīng)過M、E和F′三點的拋物線的對稱軸交x軸于點Q,連接QE.在點F運動過程中,是否存在某一時刻,使得以點Q、O、E為頂點的三角形與以點P、M、F為頂點的三角形相似?若存在,請直接寫出t的值;若不存在,請說明理由.
【答案】(1)、證明過程見解析;(2)、b=2+a或b=2-a;(3)、t=,t=,t=2±
【解析】試題分析:(1)、連接PM、PN,根據(jù)切線的性質(zhì)得出PM=PN,根據(jù)就NPM=∠EPF=90°得出∠NPE=∠MPF,從而說明△PMF和△PNE全等,從而說明PE=PF;(2)、根據(jù)t>1和1<t≤1兩種情況求出a和b的關(guān)系;(3)、根據(jù)相似三角形的幾種不同的情況求出t的值.
試題解析:(1)、如圖,連接PM,PN,
∵⊙P與x軸,y軸分別相切于點M和點N, ∴PM⊥MF,PN⊥ON且PM=PN,
∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE,
在△PMF和△PNE中,∠NPE=∠MPF PN=PM ∠PNE=∠PMF ,∴△PMF≌△PNE(ASA) ∴PE=PF,
(2)、解:①當t>1時,點E在y軸的負半軸上,
由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,
∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,
②0<t≤1時,如圖2,點E在y軸的正半軸或原點上,
同理可證△PMF≌△PNE, ∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t, ∴b+a=1+t+1﹣t=2, ∴b=2-a,
(3)、t=,t=,t=2±
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,外角∠DCG=∠A,點E、F分別是邊AD、BC上的兩點,且EF∥AB.∠D與∠1相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點P是第二象限內(nèi)的點,且點P到x軸的距離是4,到y(tǒng)軸的距離是3,則點P的坐標是( )
A.(﹣4,3)
B.(4,﹣3)
C.(﹣3,4)
D.(3,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售A,B兩種型號計算器,A型號計算器的進貨價格為每臺30元,B型號計算器的進貨價格為每臺40元.商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利潤120元.
(1)分別求商場銷售A,B兩種型號計算器每臺的銷售價格.
(2)商場準備用不多于2 500元的資金購進A、B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?【利潤=銷售價格﹣進貨價格】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負整數(shù),b是最小的正整數(shù),c是絕對值最小的數(shù),則(a+c)÷b=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:
以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com