解方程:(x+3)4+(x+1)4=82.

解:假設(shè)y==x+2
則原方程變?yōu)椋▂+1)4+(y-1)4=82?[(y+1)2-(y-1)2]2+2(y+1)2×(y-1)2-82=0?16y2+2(y2-1)2-82=0?y4+6y2-40=0?(y2+10)(y2-4)=0.
∵y2+10≠0
∴只能是y2-4=0
解這個(gè)方程,得y=±2,即
x+2=±2.
解得原方程的根為x1=0,x2=-4.
分析:由于左邊括號(hào)內(nèi)的兩個(gè)二項(xiàng)式只相差一個(gè)常數(shù),所以設(shè)y==x+2,因而首先將原方程轉(zhuǎn)化為(y+1)4+(y-1)4=82.
通過完全平方差公式、平方差公式、因式分解將方程轉(zhuǎn)化為(y2+10)(y2-4)=0.解得y的值,再代入換元式y(tǒng)=x+2求得x的值.即為方程的解.
點(diǎn)評(píng):本題通過換元,設(shè)y=x+2后,消去了未知數(shù)的奇次項(xiàng),使方程變?yōu)橐子谇蠼獾碾p二次方程.一般地,形如
(x+a)4+(x+b)4=c的方程,可以用換元(設(shè)y=)的方法化為雙二次方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、解方程x2-|x|-2=0,
解:1.當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當(dāng)x<o(jì)時(shí),原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請(qǐng)參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項(xiàng),得-3x+2x=8-1…③
合并同類項(xiàng),得-x=7…④
∴x=-7…⑤
上述解方程的過程中,是否有錯(cuò)誤?答:
 
;如果有錯(cuò)誤,則錯(cuò)在
 
步.如果上述解方程有錯(cuò)誤,請(qǐng)你給出正確的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)
;
(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2

(3)
5
2x+3
=
3
x-1
;
(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算下列各題:
(1)先化簡(jiǎn)再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案