【題目】如圖,已知BF是⊙O的直徑,A為⊙O上(異于B、F)一點(diǎn),⊙O的切線MA與FB的延長(zhǎng)線交于點(diǎn)M;P為AM上一點(diǎn),PB的延長(zhǎng)線交⊙O于點(diǎn)C,D為BC上一點(diǎn)且PA=PD,AD的延長(zhǎng)線交⊙O于點(diǎn)E.
(1)求證:;
(2)若ED、EA的長(zhǎng)是一元二次方程的兩根,求BE的長(zhǎng);
(3)若MA=,sin∠AMF=,求AB的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2);(3).
【解析】
試題(1)連接OA、OE交BC于T.想辦法證明OE⊥BC即可;
(2)由ED、EA的長(zhǎng)是一元二次方程的兩根,可得EDEA=5,由△BED∽△AEB,可得,推出BE2=DEEA=5,即可解決問(wèn)題;
(3)作AH⊥OM于H.求出AH、BH即可解決問(wèn)題;
試題解析:(1)證明:連接OA、OE交BC于T.
∵AM是切線,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴.
(2)∵ED、EA的長(zhǎng)是一元二次方程的兩根,∴EDEA=5,∵,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴,∴BE2=DEEA=5,∴BE=.
(3)作AH⊥OM于H.在Rt△AMO中,∵AM=,sin∠M==,設(shè)OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD==,∴OH=1,AH=.BH=2,∴AB===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.25人中至少有3人的出生月份相同
B.任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次一定反面朝上
C.天氣預(yù)報(bào)說(shuō)明天降雨的概率為10%,則明天一定是晴天
D.任意拋擲一枚均勻的骰子,擲出的點(diǎn)數(shù)小于3的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于長(zhǎng)度為4的線段AB(圖1),小若用尺規(guī)進(jìn)行如下操作(圖2)根據(jù)作圖痕跡,有下列說(shuō)法:①△ABC是等腰三角形;②△ABC是直角三角形;③△ABC是等邊三角形;④弧AD的長(zhǎng)度為,⑤△ABC是直角三角形的依據(jù)是直徑所對(duì)的圓周角為直角,則其中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( )
A. ①②③④ B. ②③ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD邊上的動(dòng)點(diǎn),它從點(diǎn)A出發(fā)沿A→B→C→D路徑勻速運(yùn)動(dòng)到點(diǎn)D,設(shè)的面積為y,P點(diǎn)的運(yùn)動(dòng)時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線的函數(shù)表達(dá)式為,它與軸、軸的交點(diǎn)分別為兩點(diǎn).
(1)若的半徑為2,說(shuō)明直線與的位置關(guān)系;
(2)若的半徑為2,經(jīng)過(guò)點(diǎn)且與軸相切于點(diǎn),求圓心的坐標(biāo);
(3)若的內(nèi)切圓圓心是點(diǎn),外接圓圓心是點(diǎn),請(qǐng)直接寫出的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).
古希臘的幾何學(xué)家海倫在他的著作《度量論》一書中給出了利用三角形三邊之長(zhǎng)求面積的公式﹣﹣﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長(zhǎng),,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:
∵a=3,b=4,c=5
∴=6
∴S===6
事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問(wèn)題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
根據(jù)上述材料,解答下列問(wèn)題:
如圖,在△ABC中,BC=7,AC=8,AB=9
(1)用海倫公式求△ABC的面積;
(2)如圖,AD、BE為△ABC的兩條角平分線,它們的交點(diǎn)為I,求△ABI的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com