如果關于x的一元二次方程(1-m)x2-2x-1=0有兩個不相等的實數(shù)根,當m在它的取值范圍內(nèi)取最大整數(shù)時,求數(shù)學公式的值.

解:∵一元二次方程有兩個不相等的實數(shù)根,
∴△=4+4(1-m)=8-4m>0,且1-m≠0,∴m<2,且m≠1.
當m=0時,無意義,故m≠0,
則m的最大整數(shù)值為-1,所以=4×1+1=5.
答:=5.
分析:根據(jù)關于x的一元二次方程(1-m)x2-2x-1=0有兩個不相等的實數(shù)根可知△>0,二次項系數(shù)不等于0,可求出m的范圍,即可求得m的值,從而求得代數(shù)式的值為5.
點評:主要考查了根的判別式的運用和綜合思考的能力,要用縝密的思維把所有的條件都考慮進去,從而解出答案.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如果關于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項系數(shù)與常數(shù)項之和等于一次項系數(shù),求證:-1必是該方程的一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(12分)如圖,已知關于的一元二次函數(shù))的圖象與軸相交于兩點(點在點的左側),與軸交于點,且,頂點為

1.⑴ 求出一元二次函數(shù)的關系式;

2.⑵點為線段上的一個動點,過點軸的垂線,垂足為.若,的面積為,求關于的函數(shù)關系式,并寫出的取值范圍;

3.⑶ 探索線段上是否存在點,使得為直角三角形,如果存在,求出的坐標;如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(12分)如圖,已知關于的一元二次函數(shù))的圖象與軸相交于、兩點(點在點的左側),與軸交于點,且,頂點為

【小題1】⑴ 求出一元二次函數(shù)的關系式;
【小題2】⑵ 為線段上的一個動點,過點軸的垂線,垂足為.若,的面積為,求關于的函數(shù)關系式,并寫出的取值范圍;
【小題3】⑶ 探索線段上是否存在點,使得為直角三角形,如果存在,求出的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年山東省東營市學業(yè)水平模擬考試數(shù)學卷 題型:解答題

(12分)如圖,已知關于的一元二次函數(shù))的圖象與軸相交于、兩點(點在點的左側),與軸交于點,且,頂點為

1.⑴ 求出一元二次函數(shù)的關系式;

2.⑵點為線段上的一個動點,過點軸的垂線,垂足為.若,的面積為,求關于的函數(shù)關系式,并寫出的取值范圍;

3.⑶ 探索線段上是否存在點,使得為直角三角形,如果存在,求出的坐標;如果不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如果關于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項系數(shù)與常數(shù)項之和等于一次項系數(shù),求證:-1必是該方程的一個根.

查看答案和解析>>

同步練習冊答案