精英家教網 > 初中數學 > 題目詳情
若關于x的方程=3的解是非負數,則b的取值范圍是    
【答案】分析:先解關于x的分式方程,求得x的值,然后再依據“解是非負數”建立不等式求b的取值范圍.
解答:解:去分母得,2x-b=3x-3∴x=3-b
∵x≥0
∴3-b≥0
解得,b≤3
又∵x-1≠0
∴x≠1
即3-b≠1,b≠2
則b的取值范圍是b≤3且b≠2.
點評:由于我們的目的是求b的取值范圍,根據方程的解列出關于b的不等式,另外,解答本題時,易漏掉分母不等于0這個隱含的條件,這應引起足夠重視.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:關于x的一元二次方程kx2+2x+2-k=0.
(1)若原方程有實數根,求k的取值范圍;
(2)設原方程的兩個實數根分別為x1,x2
①當k取哪些整數時,x1,x2均為整數;
②利用圖象,估算關于k的方程x1+x2+k-1=0的解.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:關于x的方程(k-1)x2-2kx+k+2=0 有實數根.
(1)求k的取值范圍;
(2)若x1,x2是方程(k-1)x2-2kx+k+2=0的兩個實數根(x1≠x2),且滿足(k-1)x12+2kx2+k+2=4x1x2,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

閱讀材料:如果x1,x2是一元二次方程ax2+bx+c=0的兩根,那么有x1+x2=-
b
a
,x1x2=
c
a
,這是一元二次方程根與系數的關系.據此材料解答以下問題:
若關于x的方程x2-6x+k=0有兩個實數根.
(1)求k的取值范圍;
(2)若x1,x2是方程x2-6x+k=0的兩根,且x12x22-x1-x2=115,求k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料,解答后面的問題:若關于x的方程
x-a
x-2
=-1
的根大于0,求a的取值范圍.
解:去分母,得x-a=-(x-2),
x=
a+2
2
,∵x>0,∴
a+2
2
>0,∴a>-2.
又∵x-2≠0,即x≠2,∴
a+2
2
≠2,a≠2,
∴a的取值范圍是a>-2且a≠2.
問題:若方程
x-1
x-2
+
2-x
x+1
=
2x+a
x2-x-2
的根是負數,試求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2011-2012年湖北宜昌市長陽縣七年級上期末復習(三)數學試卷(解析版) 題型:填空題

 若關于x的方程的解相同,則k的值為__________.

 

查看答案和解析>>

同步練習冊答案