【題目】已知:二次函數(shù),下列說法錯誤的是( )
A. 當(dāng)時,隨的增大而減小
B. 若圖象與軸有交點,則
C. 當(dāng)時,不等式的解集是
D. 若將圖象向上平移個單位,再向左平移個單位后過點,則
【答案】B
【解析】
A、當(dāng)x<1時,在對稱軸右側(cè),由此可以確定函數(shù)的單調(diào)性;
B、若圖象與x軸有交點,即△=16+4a≥0,利用此即可判斷是否正確;
C、當(dāng)a=3時,不等式x2﹣4x+a<0的解集可以求出,然后就可以判斷是否正確;
D、根據(jù)平移規(guī)律可以求出a的值,然后判斷是否正確.
解:二次函數(shù)為y=x2﹣4x﹣a,對稱軸為x=2,圖象開口向上.則:
A、當(dāng)x<1時,y隨x的增大而減小,故選項正確;
B、若圖象與x軸有交點,即△=16+4a≥0則a≥﹣4,故選項錯誤;
C、當(dāng)a=3時,不等式x2﹣4x+a<0的解集是1<x<3,故選項正確;
D、原式可化為y=(x﹣2)2﹣4﹣a,將圖象向上平移1個單位,再向左平移3個單位后所得函數(shù)解析式是y=(x+1)2﹣3﹣a.
函數(shù)過點(1,﹣2),代入解析式得到:a=3.故選項正確.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3).
(1)求這個函數(shù)的解析式;
(2)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(3)當(dāng)-3<x<-1時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展以素質(zhì)提升為主題的研學(xué)活動,推出了以下四個項目供學(xué)生選擇:A.模擬駕駛;B.軍事競技;C.家鄉(xiāng)導(dǎo)游;D.植物識別.學(xué)校規(guī)定:每個學(xué)生都必須報名且只能選擇其中一個項目.八年級(3)班班主任寧老師對全
班學(xué)生選擇的項目情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖中的信息,解決下列問題:
(1)八年級(3)班學(xué)生總?cè)藬?shù)是多少,并將條形統(tǒng)計圖補充完整;
(2)寧老師發(fā)現(xiàn)報名參加“植物識別”的學(xué)生中恰好有兩名男生,現(xiàn)準備從這組學(xué)生中任意挑選兩名擔(dān)任活動記錄員,那么恰好選1名男生和1名女生擔(dān)任活動記錄員的概率;
(3)若學(xué)校學(xué)生總?cè)藬?shù)為2000人,根據(jù)八年級(3)班的情況,估計全校報名軍事競技的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數(shù)的解析式;
(2)是否存在點P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點坐標(biāo);若不存在,請說明理由;
(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖分別是兩根木棒及其影子的情形.
(1)哪個圖反映了太陽光下的情形?哪個圖反映了路燈下的情形?
(2)在太陽光下,已知小明的身高是1.8米,影長是1.2米,旗桿的影長是4米,求旗桿的高;
(3)請在圖中分別畫出表示第三根木棒的影長的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是
A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一均勻硬幣10次都可能正面朝上
C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50次
D. 通過拋一均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的三個方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一個方程有實根,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是⊙O的切線,切點為B,AO交⊙O于點C,過點C作DC⊥OA,交AB于點D.
(1)求證:∠CDO=∠BDO;
(2)若∠A=30°,⊙O的半徑為4,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按480元銷售時,每天可銷售160個;若銷售單價每降低1元,每天可多售出2個。已知每個玩具的固定成本為360元.設(shè)每個玩具降價x元,請解決下列問題:
(1)降價后該玩具的日銷售量為多少個,每個玩具盈利多少元;(用含x的代數(shù)式表示)
(2)若上述條件不變,每個玩具降價多少元時,廠家每天可獲利潤20000元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com