.如圖(1),在直角△ABC中, ∠ACB=90,CD⊥AB,垂足為D,點E在AC上,BE交CD于點G,EF⊥BE交AB于點F,若AC=mBC,CE=nEA(m,n為實數(shù)).
試探究線段EF與EG的數(shù)量關系.
(1) 如圖(2),當m=1,n=1時,EF與EG的數(shù)量關系是
證明:
(2) 如圖(3),當m=1,n為任意實數(shù)時,EF與EG的數(shù)量關系是
證明
(3) 如圖(1),當m,n均為任意實數(shù)時,EF與EG的數(shù)量關系是
(寫出關系式,不必證明)
(1)圖甲:連接DE,
∵AC=mBC,CD⊥AB,當m=1,n=1時
∴AD=BD,∠ACD=45°,
∴CD=AD=AB,
∵AE=nEC,
∴DE=AE=EC=AC,
∴∠EDC=45°,DE⊥AC,
∵∠A=45°,
∴∠A=∠EDG,
∵EF⊥BE,
∵∠AEF+∠FED=∠EFD+∠DEG=90°,
∴∠AEF=∠DEG,
∴△AEF≌△DEG(ASA),
∴EF=EG.
(2)解:EF=EG證明:作EM⊥AB于點M,EN⊥CD于點N,
∵EM∥CD,
∴△AEM∽△ACD,
∴
即EM=CD,
同理可得,EN=AD,
∵∠ACB=90°,CD⊥AB,
∴tanA=,
∴,
又∵EM⊥AB,EN⊥CD,
∴∠EMF=∠ENG=90°,
∵EF⊥BE,
∴∠FEM=∠GEN,
∴△EFM∽△EGN,
∴,
即EF=EG;
(3)EF=EG.
解析:略
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、(-
| ||
B、(-
| ||
C、(-
| ||
D、(
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、2 | B、1 | C、0 | D、2015 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com