如圖所示,CD所在直線垂直平分線段AB,怎樣使用圖中所示的工具找到圓形工件的圓心?請寫出具體做法.

答案:
解析:

作直線CD,然后將工具旋轉一個角度,(AB兩點必須在圓上),再沿CD作一條直線,兩直線的交點即為圓心.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,某隧道的截面是由一拋物線和一矩形構成,其行車道CD總寬度為8米,隧道為單行線2車道.
(1)以矩形一邊EF所在直線為x軸,經(jīng)過隧道頂端最高點H且垂直于EF的直線為y軸,建立如圖所示的平面直角坐標系,求出此拋物線的解析式;
(2)在隧道拱的兩側距地面3米高處各安裝一盞路燈,在(1)的平面直角坐標系中,用坐標表示其中一盞路燈的位置;
(3)為了保證行車安全,要求行駛車輛頂部(設為平頂)與隧道拱在豎直方向上高度之差至少有0.5米.現(xiàn)有一輛汽車,裝載貨物后,其寬度為4米,車載貨物的頂部與路面的距離為2.5米,該車能否通過這個隧道?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖是王老師休假釣魚時的一張照片,魚桿前部分近似呈拋物線的形狀,后部分呈直線形.已知拋物線上關于對稱軸對稱的兩點B,C之間的距離為2米,頂點O離水面的高度為2
2
3
米,人握的魚桿底端D離水面1
1
3
米,離拐點C的水平距離1米,且仰角為45°,建立如圖所示的平面直角坐標系.
(1)試根據(jù)上述信息確定拋物線BOC和CD所在直線的函數(shù)表達式;
(2)當繼續(xù)向上拉魚使其剛好露出水面時,釣桿的傾斜角增大了15°,直線部分的長度變成了1米(即ED長為1米),頂點向上增高
2
3
米,且右移
1
2
米(即頂點變?yōu)镕),假設釣魚線與人手(點D)的水平距離為2
1
4
米,那么釣魚線的長度為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,某隧道的截面是由一拋物線和一矩形構成,其行車道CD總寬度為8米,隧道為單行線2車道.
(1)以矩形一邊EF所在直線為x軸,經(jīng)過隧道頂端最高點H且垂直于EF的直線為y軸,建立如圖所示的平面直角坐標系,求出此拋物線的解析式;
(2)在隧道拱的兩側距地面3米高處各安裝一盞路燈,在(1)的平面直角坐標系中,用坐標表示其中一盞路燈的位置;
(3)為了保證行車安全,要求行駛車輛頂部(設為平頂)與隧道拱在豎直方向上高度之差至少有0.5米.現(xiàn)有一輛汽車,裝載貨物后,其寬度為4米,車載貨物的頂部與路面的距離為2.5米,該車能否通過這個隧道?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年湖北省武漢市中考數(shù)學模擬試卷(十六)(解析版) 題型:解答題

如圖是王老師休假釣魚時的一張照片,魚桿前部分近似呈拋物線的形狀,后部分呈直線形.已知拋物線上關于對稱軸對稱的兩點B,C之間的距離為2米,頂點O離水面的高度為米,人握的魚桿底端D離水面米,離拐點C的水平距離1米,且仰角為45°,建立如圖所示的平面直角坐標系.
(1)試根據(jù)上述信息確定拋物線BOC和CD所在直線的函數(shù)表達式;
(2)當繼續(xù)向上拉魚使其剛好露出水面時,釣桿的傾斜角增大了15°,直線部分的長度變成了1米(即ED長為1米),頂點向上增高米,且右移米(即頂點變?yōu)镕),假設釣魚線與人手(點D)的水平距離為米,那么釣魚線的長度為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年《海峽教育報》初中數(shù)學綜合練習(五)(解析版) 題型:解答題

如圖,某隧道的截面是由一拋物線和一矩形構成,其行車道CD總寬度為8米,隧道為單行線2車道.
(1)以矩形一邊EF所在直線為x軸,經(jīng)過隧道頂端最高點H且垂直于EF的直線為y軸,建立如圖所示的平面直角坐標系,求出此拋物線的解析式;
(2)在隧道拱的兩側距地面3米高處各安裝一盞路燈,在(1)的平面直角坐標系中,用坐標表示其中一盞路燈的位置;
(3)為了保證行車安全,要求行駛車輛頂部(設為平頂)與隧道拱在豎直方向上高度之差至少有0.5米.現(xiàn)有一輛汽車,裝載貨物后,其寬度為4米,車載貨物的頂部與路面的距離為2.5米,該車能否通過這個隧道?請說明理由.

查看答案和解析>>

同步練習冊答案