【題目】已知拋物線與鈾交于兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為.
(1)求拋物線的表達(dá)式;
(2)若將拋物線沿軸平移后得到拋物線,拋物線經(jīng)過點(diǎn)且與軸交于點(diǎn),頂點(diǎn)為.在拋物線上是否存在一點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)拋物線的表達(dá)式為;(2)點(diǎn)的坐標(biāo)為或.
【解析】
(1)直接利用待定系數(shù)法即可得;
(2)先根據(jù)(1)的結(jié)論求出點(diǎn)C、D的坐標(biāo),再根據(jù)二次函數(shù)的圖象平移規(guī)律、待定系數(shù)法可求出拋物線的表達(dá)式,從而可得出點(diǎn)的坐標(biāo),然后根據(jù)三角形的面積公式建立等式求解即可得.
(1)由題意,將點(diǎn)代入得
解得
則拋物線的表達(dá)式為;
(2)存在,求解過程如下:
∵
∴
當(dāng)時(shí),,則點(diǎn)C的坐標(biāo)為
設(shè)拋物線的表達(dá)式為
∵拋物線經(jīng)過點(diǎn)
∴,解得
∴拋物線的表達(dá)式為
∴
當(dāng)時(shí),,則點(diǎn)的坐標(biāo)為
∴
設(shè)
則在中,邊上的高為,在中,邊上的高為
∵,即
∴,即
解得或
當(dāng)時(shí),
當(dāng)時(shí),
則點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)M為該拋物線上一動(dòng)點(diǎn),在(2)的條件下,請(qǐng)求出當(dāng)|PM﹣AM|的最大值時(shí)點(diǎn)M的坐標(biāo),并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過點(diǎn)與點(diǎn),拋物線經(jīng)過原點(diǎn),頂點(diǎn)是,且與軸交于另一點(diǎn),則_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn),分別在,軸的負(fù)半軸上,,在反比例函數(shù)()的圖象上,與軸交于點(diǎn),且,若的面積是3,則的值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,點(diǎn)為邊的中點(diǎn),點(diǎn)在對(duì)角線上且,則長的最大值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△EBF為等腰直角三角形,點(diǎn)B為直角頂點(diǎn), 四邊形ABCD是正方形.
⑴ 求證:△ABE≌△CBF;
⑵ CF與AE有什么特殊的位置關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0)、C,點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線PQ,過點(diǎn)A作于點(diǎn)Q,連接AP(AP不平行x軸).
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線上運(yùn)動(dòng),若∽(點(diǎn)P與點(diǎn)C對(duì)應(yīng)),求點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)P位于拋物線的對(duì)稱軸的右側(cè),將沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn),當(dāng)點(diǎn)落在x軸上時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情無情人有情,愛心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,某班學(xué)生積極參加獻(xiàn)愛心活動(dòng),該班50名學(xué)生的捐款統(tǒng)計(jì)情況如下表:
金額/元 | 5 | 10 | 20 | 50 | 100 |
人數(shù) | 6 | 17 | 14 | 8 | 5 |
則他們捐款金額的眾數(shù)和中位數(shù)分別是( )
A.100,10B.10,20C.17,10D.17,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點(diǎn)B的坐標(biāo)為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE最大.
①求點(diǎn)P的坐標(biāo)和PE的最大值.
②在直線PD上是否存在點(diǎn)M,使點(diǎn)M在以AB為直徑的圓上;若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com