【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小,此時∠MAN的度數(shù)為_________°.
【答案】40
【解析】
根據(jù)要使△AMN的周長最小,即利用點的對稱,使三角形的三邊在同一直線上,作出A關(guān)于BC和CD的對稱點A′,A″,即可得出∠AA′M+∠A″=∠HAA′=70°,進(jìn)而得出∠MAB+∠NAD=70°,即可得出答案.
解:作A關(guān)于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值,如圖:
∵∠DAB=110°,
∴∠HAA′=70°,
∴∠AA′M+∠A″=∠HAA′=70°,
∵∠MA′A=∠MAB,∠NAD=∠A″,
∴∠MAB+∠NAD=70°,
∴∠MAN=110°70°=40°,
故答案為40.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABF中,BE⊥AF垂足為E,AD∥BC,且AF平分∠DAB,求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=(6+3m)x+(n-4).
(1)m為何值時,y隨x的增大而減小.
(2)m,n分別為何值時,函數(shù)的圖象經(jīng)過原點?
(3)m,n分別為何值時,函數(shù)的圖象與y=3x+2平行,且與y軸的交點在x軸的下方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應(yīng)點P′),當(dāng)AP旋轉(zhuǎn)至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.
已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.
(1)如圖1,當(dāng)α=60°時,將△AEC繞點A順時針旋轉(zhuǎn)60°到△AFB的位置,連接DF,
①求∠DAF的度數(shù);
②求證:△ADE≌△ADF;
(2)如圖2,當(dāng)α=90°時,猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)α=120°,BD=4,CE=5時,請直接寫出DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)任意四邊形四邊中點圍成的四邊形是__________;
(2)對角線相等的四邊形四邊中點圍成的四邊形是__________;
(3)對角線垂直的四邊形四邊中點圍成的四邊形是__________;并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的頂點坐標(biāo)分別為A(﹣2,5),B(﹣4,3),C(﹣1,﹣1).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);
(2)請畫出△ABC關(guān)于y軸對稱的△A2B2C2,并寫出點A2的坐標(biāo);
(3)在邊AC上有一點P(a、b),直接寫出以上兩次圖形變換后的對稱點P1、P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),與y軸交于點C.若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點到達(dá)端點時,另一點也隨之停止運(yùn)動.
(1)求該二次函數(shù)的解析式及點C的坐標(biāo);
(2)當(dāng)點P運(yùn)動到B點時,點Q停止運(yùn)動,這時,在x軸上是否存在點E,使得以A,E,Q為頂點的三角形為以AQ為腰的等腰三角形?若存在,請求出E點坐標(biāo);若不存在,請說明理由.
(3)在AC段的拋物線上有一點R到直線AC的距離最大,請直接寫出點R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等邊△ABC中,點D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com