【題目】某汽車銷售公司2月份銷售新上市一種新型低能耗汽車20輛,由于該型汽車的優(yōu)越的經(jīng)濟(jì)適用性,銷量快速上升,4月份該公司銷售該型汽車達(dá)45輛.

(1)求該公司銷售該型汽車3月份和4月份的平均增長率;

(2)該型汽車每輛的進(jìn)價(jià)為10萬元;且銷售a輛汽車,汽車廠返利銷售公司0.03a萬元/輛,該公司的該型車售價(jià)為11萬元/輛,若使5月份每輛車盈利不低于2.6萬元,那么該公司5月份至少需要銷售該型汽車多少輛?此時(shí)總盈利至少是多少萬元?(盈利=銷售利潤+返利)

【答案】(1) 該公司銷售該型汽車3月份和4月份的平均增長率為50%;(2) 公司5月份至少需要銷售該型汽車54輛,此時(shí)總盈利至少是141.48萬元.

【解析】

(1)設(shè)該公司銷售該型汽車3月份和4月份的平均增長率為x.等量關(guān)系為:2月份的銷售量×(1+增長率)2=4月份的銷售量,把相關(guān)數(shù)值代入求解即可.
(2)根據(jù)5月份每輛車盈利不低于2.6萬元,得到銷售汽車輛數(shù)的范圍,根據(jù)整數(shù)的性質(zhì)得到該公司5月份至少需要銷售該型汽車多少輛,再根據(jù)盈利=銷售利潤+返利,列出算式即可得到答案.

解:(1)設(shè)該公司銷售該型汽車3月份和4月份的平均增長率為x,

根據(jù)題意列方程:20(1+x)2=45,

解得x1=﹣250%(不合題意,舍去),x2=50%.

答:該公司銷售該型汽車3月份和4月份的平均增長率為50%.

(2)由題意得:

0.03a+(11﹣10)≥2.6,

解得:a≥53,

a為整數(shù),

∴該公司5月份至少需要銷售該型汽車54輛,

(11﹣10)×54+0.03×54×54=141.48(萬元).

答:該公司5月份至少需要銷售該型汽車54輛,此時(shí)總盈利至少是141.48萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,E為BC邊中點(diǎn),以AD為直徑的O與AE交于點(diǎn)F.

(1)求證:四邊形AOCE為平行四邊形;

(2)求證:CF與O相切;

(3)若F為AE的中點(diǎn),求ADF的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,BD是O的弦,延長BD到點(diǎn)C,使DC=BD,連結(jié)AC,過點(diǎn)D作DEAC,垂足為E

1求證:AB=AC;

2求證:DE為O的切線;

3O半徑為5,BAC=60°,求DE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=3x的圖象相交于點(diǎn)A,其橫坐標(biāo)為2.

(1)求k的值;

(2)點(diǎn)B為此反比例函數(shù)圖象上一點(diǎn),其縱坐標(biāo)為3.過點(diǎn)BCB∥OA,交x軸于點(diǎn)C,直接寫出線段OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,BCO的弦,B=60°,點(diǎn)OB內(nèi),點(diǎn)D上的動(dòng)點(diǎn),點(diǎn)M,N,P分別是ADDC,CB的中點(diǎn).若O的半徑為2,則PN+MN的長度的最大值是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn)P(2,)作x軸的平行線交y軸于點(diǎn)A,交雙曲線于點(diǎn)N,作PM⊥AN交雙曲線于點(diǎn)M,連接AM,若PN=4.

(1)求k的值;

(2)設(shè)直線MN解析式為y=ax+b,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩只捕撈船同時(shí)在上午港出海捕魚.甲船以的速度沿西偏北方向前進(jìn),乙船以的速度沿東北方向前進(jìn).甲船在航行到達(dá)處,此時(shí)甲船發(fā)現(xiàn)部分漁具丟在乙船上,于是甲船快速(勻速)沿北偏東的方向追趕,結(jié)果兩船在處相遇.(其他因素不作考慮)

問乙船在什么時(shí)候被甲船追上;

求甲船追趕乙船的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:

徑賽項(xiàng)目:100m,200m,400m(分別用A1、A2A3表示);

田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用B1、B2表示).

(1)該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為________;

(2)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或列表列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一塊含30°角的三角板的直角頂點(diǎn)放在反比例函數(shù)y=﹣x<0)的圖象上的點(diǎn)C處,另兩個(gè)頂點(diǎn)分別落在原點(diǎn)Ox軸的負(fù)半軸上的點(diǎn)A處,且∠CAO=30°,則AC邊與該函數(shù)圖象的另一交點(diǎn)D的坐標(biāo)坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊答案