【題目】如圖,在平面直角坐標(biāo)系中,一個(gè)含有45°角的三角板的其中一個(gè)銳角頂點(diǎn)置于點(diǎn)A(﹣3,﹣3)處,將其繞點(diǎn)A旋轉(zhuǎn),這個(gè)45°角的兩邊所在的直線分別交x軸、y軸的正半軸于點(diǎn)B,C,連接BC,函數(shù)(x>0)的圖象經(jīng)過BC的中點(diǎn)D,則k=_____.
【答案】
【解析】
過A點(diǎn)作AM⊥x軸,AN⊥y軸,連接AO,根據(jù)A點(diǎn)坐標(biāo)可知OA長度,再證明△AOC∽△BOA,根據(jù)得到的比例式計(jì)算出OBOC;過D點(diǎn)作DE⊥x軸,DF⊥y軸,根據(jù)D為BC中點(diǎn)可以計(jì)算出DEDF,從而確定了k值.
解:過A點(diǎn)作AM⊥x軸,AN⊥y軸,
則四邊形AMON是正方形,連接AO.
由A(﹣3,﹣3),可得OA=.
則∠AOC=∠BOA=135°.
∴∠CAO+∠ACO=45°,
∵∠CAO+∠BAO=45°,
∴∠ACO=∠BAO.
∴△AOC∽△BOA.
∴,即OA2=OBOC=18.
∴△OBC面積=×18=9.
過D點(diǎn)作DE⊥x軸,DF⊥y軸,
∵D為BC中點(diǎn),
∴DE=OD,DF=OB.
k=DEOF=OBOC=.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,過點(diǎn)C作直線CF∥AD.
(問題)如圖①,過點(diǎn)D作直線DG∥AB交直線CF于點(diǎn)E,連結(jié)AE,求證:AB=DE.
(探究)如圖②,在線段AD上任取一點(diǎn)P,過點(diǎn)P作直線PG∥AB交直線CF于點(diǎn)E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.
(應(yīng)用)在探究的條件下,設(shè)PE交AC于點(diǎn)M.若點(diǎn)P是AD的中點(diǎn),且△APM的面積為1,直接寫出四邊形ABPE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(﹣3,0),B(﹣1,0)兩點(diǎn),拋物線的頂點(diǎn)為M,直線y=﹣4x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.
(1)求拋物線的解析式;
(2)過Q(0,3)作不平行于x軸的直線l
①如圖2,將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),直線l交拋物線于點(diǎn)E、F,在y軸上存在一點(diǎn)P,使△PEF的內(nèi)心在y軸上,求點(diǎn)P的坐標(biāo);
②直線l交△CMD的邊CM、CD于點(diǎn)G、H(G點(diǎn)不與M點(diǎn)重合、H點(diǎn)不與D點(diǎn)重合).S四邊形MDHG,S△CGH分別表示四邊形MDHG和△CGH的面積,試探究的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的對(duì)稱軸為x=﹣1,且過點(diǎn)(﹣3,0),(0,﹣3).
(1)求拋物線的表達(dá)式.
(2)已知點(diǎn)(m,k)和點(diǎn)(n,k)在此拋物線上,其中m≠n,請(qǐng)判斷關(guān)于t的方程t2+mt+n=0是否有實(shí)數(shù)根,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,于點(diǎn)D,點(diǎn)E是直線AC上一動(dòng)點(diǎn),連接DE,過點(diǎn)D作,交直線BC于點(diǎn)F.
探究發(fā)現(xiàn):
如圖1,若,點(diǎn)E在線段AC上,則______;
數(shù)學(xué)思考:
如圖2,若點(diǎn)E在線段AC上,則______用含m,n的代數(shù)式表示;
當(dāng)點(diǎn)E在直線AC上運(yùn)動(dòng)時(shí),中的結(jié)論是否任然成立?請(qǐng)僅就圖3的情形給出證明;
拓展應(yīng)用:若,,,請(qǐng)直接寫出CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩種商品原來的單價(jià)和為100元.因市場變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來的單價(jià)和提高了20%.甲、乙兩種商品原來的單價(jià)各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)E、F在邊BC上,點(diǎn)D在邊AC上,連接ED、DF,=m,∠A=∠EDF=120°
(1)如圖1,點(diǎn)E、B重合,m=1時(shí)
①若BD平分∠ABC,求證:CD2=CFCB;
②若,則= ;
(2)如圖2,點(diǎn)E、B不重合.若BE=CF,=m,,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(4,﹣2)、B(﹣2,n)兩點(diǎn),與x軸交于點(diǎn)C.
(1)求k2,n的值;
(2)請(qǐng)直接寫出不等式k1x+b<的解集;
(3)將x軸下方的圖象沿x軸翻折,點(diǎn)A落在點(diǎn)A′處,連接A′B,A′C,求△A′BC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com