【題目】拋物線(xiàn)y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從表可知,
①拋物線(xiàn)與x軸的交點(diǎn)為
②拋物線(xiàn)的對(duì)稱(chēng)軸是;
③函數(shù)y=ax2+bx+c的最大值為
④x , y隨x增大而增大.

【答案】(﹣2,0)和(3,0);x= ;;<
【解析】解:①∵當(dāng)x=0和x=1時(shí),y=6,
∴拋物線(xiàn)對(duì)稱(chēng)軸為x= =
∵x=﹣2時(shí),y=0,
∴由對(duì)稱(chēng)性可知x=3時(shí),y=0,
∴拋物線(xiàn)與x軸的另一交點(diǎn)坐標(biāo)為(3,0);
②由①知,拋物線(xiàn)對(duì)稱(chēng)軸為x= ,
③設(shè)拋物線(xiàn)解析式為y=a(x﹣ 2+k,代入(﹣2,0),0,6)求得函數(shù)y=﹣(x﹣ 2+ ,
∵拋物線(xiàn)的開(kāi)口向下,
∴函數(shù)的最大值為
④在對(duì)稱(chēng)軸左側(cè),y隨x增大而增大,所以由表中所給數(shù)據(jù)可知當(dāng)x< ,y隨x的增大而增大;
故答案是:①(﹣2,0)和(3,0);②x= ;③ ;④<
【考點(diǎn)精析】通過(guò)靈活運(yùn)用拋物線(xiàn)與坐標(biāo)軸的交點(diǎn),掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與正比例函數(shù)的圖象交于點(diǎn)Am,4).

(1)求m、n的值;

(2)設(shè)一次函數(shù)的圖象與x軸交于點(diǎn)B,求△AOB的面積;

(3)直接寫(xiě)出使函數(shù)的值小于函數(shù)的值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=﹣x2+2mx﹣m2+1的對(duì)稱(chēng)軸是直線(xiàn)x=1.
(1)求拋物線(xiàn)的表達(dá)式;
(2)點(diǎn)D(n,y1),E(3,y2)在拋物線(xiàn)上,若y1<y2 , 請(qǐng)直接寫(xiě)出n的取值范圍;
(3)設(shè)點(diǎn)M(p,q)為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),當(dāng)﹣1<p<2時(shí),點(diǎn)M關(guān)于y軸的對(duì)稱(chēng)點(diǎn)都在直線(xiàn)y=kx﹣4的上方,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水資源透支現(xiàn)象令人擔(dān)憂(yōu),節(jié)約用水迫在眉睫,針對(duì)居民用水浪費(fèi)現(xiàn)象,保定市政府和環(huán)保組織進(jìn)行了調(diào)查,并制定出相應(yīng)的措施.

(1)據(jù)環(huán)保組織調(diào)查統(tǒng)計(jì),全市至少有6×106個(gè)水龍頭、2×104個(gè)抽水馬桶漏水,若一萬(wàn)個(gè)漏水的水龍頭一個(gè)月能漏掉a立方米水;一萬(wàn)個(gè)漏水的馬桶一個(gè)月漏掉b立方米水,則全市一個(gè)月僅這兩項(xiàng)所造成的水流失量是多少?

(2)針對(duì)居民用水浪費(fèi)現(xiàn)象,市政府將制定居民用水標(biāo)準(zhǔn):規(guī)定每個(gè)三口之家每月的標(biāo)準(zhǔn)用水量,超過(guò)標(biāo)準(zhǔn)部分加價(jià)收費(fèi),不超標(biāo)部分的水價(jià)為每立方米3.5元;超標(biāo)部分為每立方米4.2元.若某家庭某月用水12立方米,交水費(fèi)44.8元,請(qǐng)你通過(guò)列方程求出我市規(guī)定的三口之家每月的標(biāo)準(zhǔn)用水量為多少立方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為﹣20,B點(diǎn)對(duì)應(yīng)的數(shù)為100.

(1)請(qǐng)寫(xiě)出與A,B兩點(diǎn)距離相等的點(diǎn)M所對(duì)應(yīng)的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請(qǐng)列方程求出x,并指出點(diǎn)C表示的數(shù).

(3)若當(dāng)電子螞蟻PB點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請(qǐng)列方程求出y并指出點(diǎn)D表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)y=﹣x2+bx+c的圖象過(guò)點(diǎn)(﹣1,﹣8),(0,﹣3).
(1)求此二次函數(shù)的表達(dá)式,并用配方法將其化為y=a(x﹣h)2+k的形式;
(2)用五點(diǎn)法畫(huà)出此函數(shù)圖象的示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平整的地面上,由若干個(gè)完全相同的棱長(zhǎng)為 10 cm 的小正方體堆成一個(gè)幾何體,如圖 所示.

(1)這個(gè)幾何體由多少個(gè)小正方體組成?請(qǐng)畫(huà)出這個(gè)幾何體的三視圖.
(2)如果在這個(gè)幾何體的表面(不包括底面)噴上黃色的漆,則在所有的小正方體中,有多少個(gè)只有一個(gè)面是黃色?有多少個(gè)只有兩個(gè)面是黃色?有多少個(gè)只有三個(gè)面是黃色?

(3)假設(shè)現(xiàn)在你手里還有一些相同的小正方體,保持這個(gè)幾何體的主視圖、俯視圖形狀 不變,最多可以再添加幾個(gè)小正方體?這時(shí)如果要重新給這個(gè)幾何體表面(不包括底面) 噴上紅色的漆,需要噴漆的面積比原幾何體增加了還是減少了?增加或減少的面積是 多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD按如下順序折疊:對(duì)折、展平,得折痕EF(如圖①);沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖②);展平,得折痕GC(如圖③),沿GH折疊,使點(diǎn)C落在DH上的C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC,GH(如圖⑥)

(1)求圖②中∠BCB′=______度;

(2)圖⑥中的△GCC′是_______三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。

現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

查看答案和解析>>

同步練習(xí)冊(cè)答案