【題目】如圖,△ABC是邊長為2的等邊三角形.取BC邊中點E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作;取中點,作∥,∥,得到四邊形,它的面積記作.照此規(guī)律作下去,則=____________________ .
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,有任意三角形,當這個三角形的一條邊上的中線等于這條邊的一半時,稱這個三角形叫“和諧三角形”,這條邊叫“和諧邊”,這條中線的長度叫“和諧距離”.
(1)已知A(2,0),B(0,4),C(1,2),D(4,1),這個點中,能與點O組成“和諧三角形”的點是 ,“和諧距離”是 ;
(2)連接BD,點M,N是BD上任意兩個動點(點M,N不重合),點E是平面內(nèi)任意一點,△EMN是以MN為“和諧邊”的“和諧三角形”,求點E的橫坐標t的取值范圍;
(3)已知⊙O的半徑為2,點P是⊙O上的一動點,點Q是平面內(nèi)任意一點,△OPQ是“和諧三角形”,且“和諧距離”是2,請描述出點Q所在位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的弦,過的中點作,垂足為,過點作直線交的延長線于點,使得.
(1)求證:是的切線;
(2)若,,求的邊上的高.
(3)在(2)的條件下,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點D,連結(jié)AD(AD<AB),將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD.
(1)請根據(jù)題意補全圖1;
(2)猜測BD和CE的數(shù)量關系并證明;
(3)作射線BD,CE交于點P,把△ADE繞點A旋轉(zhuǎn),當∠EAC=90°,AB=2,AD=1時,補全圖形,直接寫出PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料
材料1:若一個自然數(shù),從左到右各位數(shù)上的數(shù)字與從右到左各位數(shù)上的數(shù)字對應相同,則稱為“對稱數(shù)”.
材料2:對于一個三位自然數(shù),將它各個數(shù)位上的數(shù)字分別2倍后取個位數(shù)字,得到三個新的數(shù)字,,,我們對自然數(shù)規(guī)定一個運算:.
例如:是一個三位的“對稱數(shù)”,其各個數(shù)位上的數(shù)字分別2倍后取個位數(shù)字分別是:2、8、2.
則.
請解答:
(1)一個三位的“對稱數(shù)”,若,請直接寫出的所有值, ;
(2)已知兩個三位“對稱數(shù)”,若能被11整數(shù),求的所有值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形是矩形,四邊形是正方形,點在軸的正半軸上,點在軸的正半軸上,點在上,點在反比例函數(shù)的圖象上,,則正方形的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式及點B坐標;
(2)在第一象限內(nèi),當一次函數(shù)y=-x+5的值大于反比例函數(shù)(k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明、小麗兩位同學八年級10次數(shù)學單元自我檢測的成績(成績均為整數(shù),且個位數(shù)為0)分別如下圖所示:
(1)根據(jù)上圖中提供的數(shù)據(jù)填寫下表:
平均成績(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(S2) | |
小明 | 80 | 80 | ||
小麗 | 85 | 260 |
(2)如果將90分以上(含90分)的成績視為優(yōu)秀,則優(yōu)秀率高的同學是________;
(3)根據(jù)圖表信息,請你對這兩位同學各提一條不超過20個字的學習建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的弦,OA⊥OD,AB,OD相交于點C,且CD=BD.
(1)判斷BD與圓O的位置關系,并證明你的結(jié)論;
(2)當OA=3,OC=1時,求線段BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com