【題目】已知BD平分∠ABF,且交AE于點(diǎn)D.
(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)設(shè)AP交BD于點(diǎn)O,交BF于點(diǎn)C,連接CD,當(dāng)AC⊥BD時(shí),求證:四邊形ABCD是菱形.
【答案】(1)見解析:(2)見解析.
【解析】
試題(1)根據(jù)角平分線的作法作出∠BAE的平分線AP即可;
(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對(duì)角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.
試題解析:(1)如圖所示:
(2)如圖:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料.
我們知道,1+2+3+…+n=,那么12+22+32+…+n2結(jié)果等于多少呢?
在圖1所示三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12,第2行兩個(gè)圓圈中數(shù)的和為2+2,即22,…;第n行n個(gè)圓圈中數(shù)的和為n+n+n+…+n,即n2.這樣,該三角形數(shù)陣中共有個(gè)圓圈,所有圓圈中數(shù)的和為12+22+32+…+n2.
(規(guī)律探究)
將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n﹣1行的第一個(gè)圓圈中的數(shù)分別為n﹣1,2,n),發(fā)現(xiàn)每個(gè)位置上三個(gè)圓圈中數(shù)的和均為 ,由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)的總和為3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .
(解決問題)
根據(jù)以上發(fā)現(xiàn),計(jì)算:的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E點(diǎn),DF⊥AC于F點(diǎn),有下列結(jié)論:①BD=DC;②DE=DF;③AD上任意一點(diǎn)到AB,AC的距離相等;④AD上任意一點(diǎn)到B點(diǎn)與C點(diǎn)的距離不等.其中正確的是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,,把一條長(zhǎng)為2016個(gè)單位長(zhǎng)度且沒有彈性的細(xì)線線的粗細(xì)忽略不計(jì)的一端固定在點(diǎn)A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)從四邊形的一個(gè)頂點(diǎn)出發(fā)可以畫_____條對(duì)角線,把四邊形分成了 個(gè)三角形;四邊形共有____條對(duì)角線.
(2)從五邊形的一個(gè)頂點(diǎn)出發(fā)可以畫_____條對(duì)角線,把五邊形分成了 個(gè)三角形;五邊形共有____條對(duì)角線.
(3)從六邊形的一個(gè)頂點(diǎn)出發(fā)可以畫_____條對(duì)角線,把六邊形分成了 個(gè)三角形;六邊形共有____條對(duì)角線.
(4)猜想:①?gòu)?/span>100邊形的一個(gè)頂點(diǎn)出發(fā)可以畫_____條對(duì)角線,把100邊形分成了 個(gè)三角形;100邊形共有___條對(duì)角線.②從n邊形的一個(gè)頂點(diǎn)出發(fā)可以畫_____條對(duì)角線,把n分成了 個(gè)三角形;n邊形共有_____條對(duì)角線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,再解決問題,例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴n=3,m=﹣3
(1)若x2+2y2﹣2xy+4y+4=0,求xy的值
(2)已知△ABC的三邊長(zhǎng)a,b,c都是正整數(shù),且滿足a2+b2﹣6a﹣6b+18+|3﹣c|=0,請(qǐng)問△ABC是怎樣形狀的三角形?
(3)根據(jù)以上的方法是說明代數(shù)式:x2+4x+y2﹣8y+21的值一定是一個(gè)正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A、∠B、∠C所對(duì)的邊分別是a、b、c,在下列關(guān)系中,不屬于直角三角形的是( )
A. b2=a2﹣c2 B. a:b:c=3:4:5
C. ∠A﹣∠B=∠C D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y1=tx2﹣1(t>0)和拋物線C2:y2=﹣4(x﹣h)2+1(h≥1).
(1)兩拋物線的頂點(diǎn)A、B的坐標(biāo)分別為和;
(2)設(shè)拋物線C2的對(duì)稱軸與拋物線C1交于點(diǎn)N,則t為何值時(shí),A、B、M、N為頂點(diǎn)的四邊形是平行四邊形.
(3)設(shè)拋物線C1與x軸的左交點(diǎn)為點(diǎn)E,拋物線C2與x軸的右邊交點(diǎn)為點(diǎn)F,試問,在第(2)問的前提下,四邊形AEBF能否為矩形?若能,求出h值;若不能,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com