【題目】如圖,等腰△ABC中,AB=AC,P為其底角平分線的交點(diǎn),將△BCP沿CP折疊,使B點(diǎn)恰好落在AC邊上的點(diǎn)D處,若DA=DP,則∠A的度數(shù)為(

A.20°
B.30°
C.32°
D.36°

【答案】D
【解析】解:連接AP,

∵P為其底角平分線的交點(diǎn),
∴點(diǎn)P是△ABC的內(nèi)心,
∴AP平分∠BAC,
∵AB=AC,
∴∠ABC=∠ACB,
設(shè)∠A=2x,則∠DAP=x,∠PBC=∠PCB=45°﹣ x,
∵DA=DP,
∴∠DAP=∠DPA,
由折疊的性質(zhì)可得:∠PDC=∠PBC=45°﹣ x,
則∠ADP=180°﹣∠PDC=135°+ x,
在△ADP中,∠DAP+∠DPA+∠ADP=180°,即x+x+135°+ x=180°,
解得:x=18,
則∠A=2x=36°.
故選D.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2,2,3,4四個(gè)數(shù)中隨機(jī)取兩個(gè)數(shù),第一個(gè)作為個(gè)位上的數(shù)字,第二個(gè)作為十位上的數(shù)字,組成一個(gè)兩位數(shù),則這個(gè)兩位數(shù)是2的倍數(shù)的概率是 ( )

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市“全國(guó)文明村”白村果農(nóng)王保收獲枇杷20噸,桃子12噸.現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛將這批水果全部運(yùn)往外地銷售,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.
(1)王保如何安排甲、乙兩種貨車可一次性地運(yùn)到銷售地?有幾種方案?
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)300元,乙種貨車每輛要付運(yùn)輸費(fèi)240元,則果農(nóng)王保應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)最少?最少運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1+∠2+∠3+∠4+∠5+∠6=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果x =2是方程x2x+k=0的一個(gè)根,則常數(shù)k的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要了解一個(gè)城市的氣溫變化情況,下列觀測(cè)方法最可靠的一種方法是(

A. 一年中隨機(jī)選中20天進(jìn)行觀測(cè)

B. 一年中隨機(jī)選中一個(gè)月進(jìn)行連續(xù)觀測(cè)

C. 一年四季各隨機(jī)選中一個(gè)月進(jìn)行連續(xù)觀測(cè)

D. 一年四季各隨機(jī)選中一個(gè)星期進(jìn)行連續(xù)觀測(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P是線段AB的黃金分割點(diǎn),且AP>PB,則有( 。

A. AB2=APPB B. AP2=BPAB

C. BP2=APAB D. APAB=PBAP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)解不等式3(x+2)﹣1≥5﹣2(x﹣2),并把解集在數(shù)軸上表示出來
(2)解不等式組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,﹣2).

(1)求△AHO的周長(zhǎng);

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案