【題目】m>nkm>kn成立的條件為(  )

A. k>0 B. k<0 C. k≤0 D. k≥0

【答案】A

【解析】

根據(jù)不等式的基本性質(zhì)2,不等式的兩邊同乘以(或除以)同一個(gè)正數(shù)(或整式),不等號(hào)的方向不變解答.

解:∵m>n,
∴當(dāng)k>0時(shí),mk>nk,

當(dāng)k=0時(shí),mk=nk.

k>0
故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察探究,解決問(wèn)題.在四邊形ABCD中,點(diǎn)E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn),順次連接E、F、G、H得到的四邊形EFGH叫做中點(diǎn)四邊形.
(1)如圖1,求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2)請(qǐng)你探究并填空:
①當(dāng)四邊形ABCD變成平行四邊形時(shí),它的中點(diǎn)四邊形是;
②當(dāng)四邊形ABCD變成矩形時(shí),它的中點(diǎn)四邊形是;
③當(dāng)四邊形ABCD變成正方形時(shí),它的中點(diǎn)四邊形是;
(3)如圖2,當(dāng)中點(diǎn)四邊形EFGH為矩形時(shí),對(duì)角線EG與FH相交于點(diǎn)O,P為EH上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥EG,PN⊥FH,垂足分別為M、N,若EF=a,F(xiàn)G=b,請(qǐng)判斷PM+PN的長(zhǎng)是否為定值?若是,求出此定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中到處都存在著數(shù)學(xué)知識(shí),只要同學(xué)們學(xué)會(huì)用數(shù)學(xué)的眼光觀察生活,就會(huì)有許多意想不到的收獲,如圖兩幅圖都是由同一副三角板拼湊得到的:
(1)圖1中的∠ABC的度數(shù)為
(2)圖2中已知AE∥BC,則∠AFD的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到點(diǎn)C的方向平移到△DEF的位置,AB=6,DH=2,平移距離為3,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是(

A. 某事件發(fā)生的概率為1,則它必然會(huì)發(fā)生

B. 某事件發(fā)生的概率為0,則它必然不會(huì)發(fā)生

C. 拋一個(gè)普通紙杯,杯口不可能向上

D. 從一批產(chǎn)品中任取一個(gè)為次品是可能的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E,過(guò)點(diǎn)A作BD的平行線,交CE的延長(zhǎng)線于點(diǎn)F,在AF的延長(zhǎng)線上截取FG=BD,連接BG、DF.若AG=13,BG=5,則CF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角體系中,直線AB交x軸于點(diǎn)A(5,0),交y軸于點(diǎn)B,AO是M的直徑,其半圓交AB于點(diǎn)C,且AC=3。取BO的中點(diǎn)D,連接CD、MD和OC。

(1)求證:CD是M的切線;

(2)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D、M、A,其對(duì)稱軸上有一動(dòng)點(diǎn)P,連接PD、PM,求PDM的周長(zhǎng)最小時(shí)點(diǎn)P的坐標(biāo);

(3)在(2)的條件下,當(dāng)PDM的周長(zhǎng)最小時(shí),拋物線上是否存在點(diǎn)Q,使?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,若EG平分∠BEF,F(xiàn)M平分∠EFD交EG于M,EN平分∠AEF,則與∠FEM互余的角有(
A.3個(gè)
B.4個(gè)
C.5個(gè)
D.6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八年級(jí)一班開(kāi)展了“讀一本好書(shū)”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書(shū)籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了“小說(shuō)”“戲劇”“散文”“其他”四個(gè)類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類別

頻數(shù)(人數(shù))

頻率

小說(shuō)

0.5

戲劇

4

散文

10

0.25

其他

6

合計(jì)

1

根據(jù)圖表提供的信息,解答下列問(wèn)題:

(1)八年級(jí)一班有多少名學(xué)生?

(2)請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類所占的百分比;

(3)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫(huà)樹(shù)狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案