【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查發(fā)現(xiàn):在一段時間內,當銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.若商場要獲得10000元銷售利潤,該玩具銷售單價應定為多少元?售出玩具多少件?

【答案】解:設該玩具的銷售單價應定為

根據(jù)題意,得

解得

時, 件,當 時, 件.

答:該玩具的銷售單價定為 元時,售出500件;或售價定為 元時售出200件.


【解析】根據(jù)題意找出相等的關系量,購進時的單價是30元,銷售單價定為 x 元時,一件的利潤是( x 30 ),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具,得到銷售的數(shù)量是600-10(x-40),得到等式,求出x的值,該玩具銷售單價和數(shù)量.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(0,a),B(b,0)C(b,c)三點,其中a,bc滿足關系式|a2|(b3)20,(c4)2≤0

1)求ab,c的值;

2)如果在第二象限內有一點P(m,),請用含m的式子表示四邊形ABOP的面積;

3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與三角形ABC的面積相等?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市創(chuàng)全國衛(wèi)生城市,某街道積極響應,決定在街道內的所有小區(qū)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買4個垃圾箱比購買5個溫馨提示牌多350元,垃圾箱的單價是溫馨提示牌單價的3倍.

求溫馨提示牌和垃圾箱的單價各是多少元?

如果該街道需購買溫馨提示牌和垃圾箱共3000個.

求購買溫馨提示牌和垃圾箱所需費用與溫馨提示牌的個數(shù)x的函數(shù)關系式;

若該街道計劃費用不超過35萬元,而且垃圾箱的個數(shù)不少于溫馨提示牌的個數(shù)的倍,求有幾種可供選擇的方案?并找出資金最少的方案,求出最少需多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級兩個班,各選派10名學生參加學校舉行的“漢字聽寫”大賽預賽,各參賽選手的成績如下(單位:分):
A班:88,91,92,93,93,93,94,98,98,100
B班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下:

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

A班

100

a

93

93

c

B班

99

95

b

93

8.4


(1)求表中ab、c的值;
(2)依據(jù)數(shù)據(jù)分析表,有人說:“最高分在A班,A班的成績比B班好”,但也有人說B班的成績要好,請給出兩條支持B班成績好的理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

1x2;

22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù) 的圖像記為 ,其頂點為 ,二次函數(shù) 的圖像記為 ,其頂點為 ,且滿足點 上,點 上,則稱這兩個二次函數(shù)互為“伴侶二次函數(shù)”.

(1)寫出二次函數(shù) 的一個“伴侶二次函數(shù)”;
(2)設二次函數(shù) 軸的交點為 ,求以點 為頂點的二次函數(shù) 的“伴侶二次函數(shù)”;
(3)若二次函數(shù) 與其“伴侶二次函數(shù)”的頂點不重合,試求該“伴侶二次函數(shù)”的二次項系數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點P是線段AD上一動點,OBD的中點,PO的延長線交BC于點Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點A出發(fā),以1cm/秒的速度向點D運動(不與點D重合),設點P運動時間為t秒,請用t表示PD的長;并求當t為何值時,四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) ,當 時, 的增大而增大;當 時, 的增大而減小,當 時, 的值為( )
A.–1
B.– 9
C.1
D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下文,回答問題:

已知:(1-x)(1+x=1-x2

1-x)(1+x+x2=_______;

1-x)(1+x+x2+x3=_______;

1)計算上式并填空;

2)猜想:(1-x)(1+x+x2+…+xn= ;

3)你能計算399+398+397…+32+3+1的結果嗎?請寫出計算過程(結果用含有3冪的式子表示).

查看答案和解析>>

同步練習冊答案