已知:如圖1,點O為正方形ABCD內(nèi)任一點,連接AO、BO,分別以AO、BO為一邊作如圖所示正方形BOMN和正方形AOFE,連接CN
(1)AE、CN之間有怎樣的關(guān)系?請驗證;
(2)若點O是正方形ABCD外部一點,如圖2,其他條件不變(1)的結(jié)論是否成立?請驗證.
【答案】分析:(1)AE=CN,AE∥CN,理由為:連接ED,EC,AN,如圖1所示,由正方形ABCD、AOFE,得到一對角為直角,兩對邊相等,利用同角的余角相等,利用SAS得出三角形AED與三角形AOB全等,由全等三角形對應(yīng)邊相等得到DE=BO,AE=CN,再由BN=BO,等量代換得到DE=BN,同理得到三角形EDC與三角形ABN全等,利用全等三角形的對應(yīng)邊相等得到EC=AN,利用兩對對應(yīng)邊相等的四邊形為平行四邊形得到AECN為平行四邊形,利用平行四邊形的對應(yīng)邊平行且相等即可得證;
(2)AE=CN,AE∥CN,理由為:連接ED,EC,AN,如圖2所示,同理即可證明.
解答:
證明:(1)AE=CN,AE∥CN,理由為:
連接ED、AN、EC,如圖1所示,
∵正方形ABCD、AOFE,
∴∠DAB=∠EAO=90°,AO=AF,AD=AB,
∴∠EAD+∠DAO=90°,∠DAO+∠OAB=90°,
∴∠EAD=∠OAB,
在△AED和△ABO中,
,
∴△AED≌△ABO(SAS),
∴ED=BO,
∵BO=BN,
∴ED=BN,
同理AE=CN,
∵△AED≌△CBN,
∴∠ADE=∠CBN,
∴∠ADE+90°=∠CBN+90°,即∠EDC=∠ABN,
在△EDC和△ABN中,
,
∴△EDC≌△ABN(SAS),
∴EC=AN,
∴四邊形AECN是平行四邊形,
∴AE=CN,AE∥CN;
(2)結(jié)論不變,AE=CN,AE∥CN,
證明:連接ED、AN、EC,如圖2所示,
同上問證明△AED≌△CBN≌△AOB,
∴AE=CN,△EDC≌△ABN,
∴AN=EC,
∴四邊形AECN是平行四邊形,
∴AE=CN,AE∥CN.
點評:此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì),熟練掌握正方形的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、已知:如圖1,點C為線段AB上一點,△ACM,△CBN都是等邊三角形,AN交MC于點E,BM交CN于點F.
(1)求證:AN=BM;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點C按逆時針方向旋轉(zhuǎn)90°,其他條件不變,在圖2中補出符合要求的圖形,并判斷第(1)、(2)兩小題的結(jié)論是否仍然成立(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,點C為線段AB上一點,△ACM,△CBN是等邊三角形,求證:AN=BM,這時可以證明
 
 
,得到AN=BM;
(2)如果去掉“點C為線段AB上一點”的條件,而是讓△CBN繞點C精英家教網(wǎng)旋轉(zhuǎn)成圖2的情形,還有“AN=BM”的結(jié)論嗎?如果有,請給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:如圖1,點C為線段AB上一點,△ACM和△CBN都是等邊三角形,AN、BM交于點P,由△BCM≌△NCA,易證結(jié)論:①BM=AN.

(1)請寫出除①外的兩個結(jié)論:
∠MBC=∠ANC
∠BMC=∠NAC
;
(2)求出圖1中AN和BM相交所得最大角的度數(shù)
120°

(3)將△ACM繞C點按順時針方向旋轉(zhuǎn)180°,使A點落在BC上,請對照原題圖形在圖2中畫出符合要求的圖形(不寫作法,保留痕跡);
(4)探究圖2中AN和BM相交所得的最大角的度數(shù)有無變化
不變
(填變化或不變);
(5)在(3)所得到的圖形2中,請?zhí)骄俊癆N=BM”這一結(jié)論是否成立,若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•中山區(qū)二模)已知:如圖1,點O為正方形ABCD內(nèi)任一點,連接AO、BO,分別以AO、BO為一邊作如圖所示正方形BOMN和正方形AOFE,連接CN
(1)AE、CN之間有怎樣的關(guān)系?請驗證;
(2)若點O是正方形ABCD外部一點,如圖2,其他條件不變(1)的結(jié)論是否成立?請驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)已知:如圖,A點坐標為(-
32
,0)
,B點坐標為(0,3).
(1)求過A,B兩點的直線解析式;
(2)過B點作直線BP與x軸交于點P,且使OP=2OA,求△ABP的面積.

查看答案和解析>>

同步練習(xí)冊答案