【題目】如圖,在正方形ABCD中,AB=2,點(diǎn)M為正方形ABCD的邊CD上的動點(diǎn)(與點(diǎn)C,D不重合),連接BM,作MF⊥BM,與正方形ABCD的外角∠ADE的平分線交于點(diǎn)F.設(shè)CM=x,△DFM的面積為y,則y與x之間的函數(shù)關(guān)系式為________________.
【答案】y=-
【解析】
在BC上截取CH=CM,連接MH,則△MCH是等腰直角三角形,BH=MD,證出∠BHM=∠MDF,∠1=∠2,由ASA證明△BHM≌△MDF,再根據(jù)三角形面積公式求解即可.
證明:∵四邊形ABCD是正方形,
∴CD=BC,∠C=∠CDA=90°=∠ADE,
∵DF平分∠ADE,
∴∠ADF=∠ADE=45°,
∴∠MDF=90°+45°=135°.
在BC上截取CH=CM,連接MH,如圖,
則△MCH是等腰直角三角形,BH=MD,∴∠CHM=∠CMH=45°,
∴∠BHM=135°,
∴∠1+∠HMB=45°,∠BHM=∠MDF,
∵FM⊥BM,
∴∠FMB=90°,
∴∠2+∠BMH=45°,
∴∠1=∠2.
在△BHM與△MDF中,
,
∴△BHM≌△MDF(ASA),
∴BH=MD=2-x,
∴y與x之間的函數(shù)關(guān)系式為y=x(2-x)=-x2+x.
故答案為:y=-x2+x.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),連接DF,過點(diǎn)E作EH⊥DF,垂足為H,EH的延長線交DC于點(diǎn)G.
(1)猜想DG與CF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)過點(diǎn)H作MN∥CD,分別交AD,BC于點(diǎn)M,N,若正方形ABCD的邊長為10,點(diǎn)P是MN上一點(diǎn),求△PDC周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,有兩定點(diǎn)、,是反比例函數(shù)圖象上動點(diǎn),當(dāng)為直角三角形時(shí),點(diǎn)坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)的圖象過點(diǎn).
求該函數(shù)的解析式;
過點(diǎn)分別向軸和軸作垂線,垂足為和,求四邊形的面積;
求證:過此函數(shù)圖象上任意一點(diǎn)分別向軸和軸作垂線,這兩條垂線與兩坐標(biāo)軸所圍成矩形的面積為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長;
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.
(1)延長MP交CN于點(diǎn)E(如圖②).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖③的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一動點(diǎn)(不與點(diǎn)B,C重合),在AD右側(cè)作△ADE,使得AD=AE,∠DAE=∠BAC,聯(lián)結(jié)DE,CE。
(1)當(dāng)點(diǎn)D在BC邊上時(shí),求證:EC=DB;
(2)當(dāng)EC∥AB,若△ABD的最小角為20°,請寫出ADB的度數(shù),并對其中一個(gè)答案加以證明。
答:∠ADB的度數(shù)除了20°,還可能是 (直接寫出所有答案,并對其中一個(gè)答案加以證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) A,B的坐標(biāo)分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.
(1)圖1中,點(diǎn)C的坐標(biāo)為 ;
(2)如圖2,點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)E在射線CD上,過點(diǎn)B 作BF⊥BE交y軸于點(diǎn)F.
①當(dāng)點(diǎn)E為線段CD的中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo);
②當(dāng)點(diǎn)E在第二象限時(shí),請直接寫出F點(diǎn)縱坐標(biāo)y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com