【題目】如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.
(1)求證:CD是⊙O的切線;
(2)若∠D=30°,BD=2,求圖中陰影部分的面積.
【答案】(1)證明見解析;(2)陰影部分面積為
【解析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;
(2)設(shè)⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.
(1)如圖,連接OC,
∵OA=OC,
∴∠BAC=∠OCA,
∵∠BCD=∠BAC,
∴∠BCD=∠OCA,
∵AB是直徑,
∴∠ACB=90°,
∴∠OCA+OCB=∠BCD+∠OCB=90°
∴∠OCD=90°
∵OC是半徑,
∴CD是⊙O的切線
(2)設(shè)⊙O的半徑為r,
∴AB=2r,
∵∠D=30°,∠OCD=90°,
∴OD=2r,∠COB=60°
∴r+2=2r,
∴r=2,∠AOC=120°
∴BC=2,
∴由勾股定理可知:AC=2,
易求S△AOC=×2×1=
S扇形OAC=,
∴陰影部分面積為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+6x+c交x軸于A,B兩點,交y軸于點C.直線y=x﹣5經(jīng)過點B,C.
(1)求拋物線的解析式;
(2)過點A的直線交直線BC于點M.
①當AM⊥BC時,過拋物線上一動點P(不與點B,C重合),作直線AM的平行線交直線BC于點Q,若以點A,M,P,Q為頂點的四邊形是平行四邊形,求點P的橫坐標;
②連接AC,當直線AM與直線BC的夾角等于∠ACB的2倍時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,D、E分別在BC、AC邊上.
(1)如圖1,F(xiàn)是線段AD上的一點,連接CF,若AF=CF;
①求證:點F是AD的中點;
②判斷BE與CF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)如圖2,把△DEC繞點C順時針旋轉(zhuǎn)α角(0<α<90°),點F是AD的中點,其他條件不變,判斷BE與CF的關(guān)系是否不變?若不變,請說明理由;若要變,請求出相應(yīng)的正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,則滿足下列條件的一定是直角三角形的是( 。
A. ∠A:∠B:∠C=3:4:5B. a:b:c=1::3
C. a=7,b=24,c=25D. a=32,b=42,c=52
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某駐村扶貧小組為解決當?shù)刎毨栴},帶領(lǐng)大家致富.經(jīng)過調(diào)查研究,他們決定利用當?shù)厣a(chǎn)的甲乙兩種原料開發(fā)A,B兩種商品,為科學決策,他們試生產(chǎn)A、B兩種商品100千克進行深入研究,已知現(xiàn)有甲種原料293千克,乙種原料314千克,生產(chǎn)1千克A商品,1千克B商品所需要的甲、乙兩種原料及生產(chǎn)成本如下表所示.
甲種原料(單位:千克) | 乙種原料(單位:千克) | 生產(chǎn)成本(單位:元) | |
A商品 | 3 | 2 | 120 |
B商品 | 2.5 | 3.5 | 200 |
設(shè)生產(chǎn)A種商品x千克,生產(chǎn)A、B兩種商品共100千克的總成本為y元,根據(jù)上述信息,解答下列問題:
(1)求y與x的函數(shù)解析式(也稱關(guān)系式),并直接寫出x的取值范圍;
(2)x取何值時,總成本y最?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點. 將OA繞點O逆時針旋轉(zhuǎn)θ °至OP(0<θ<180),當△BCP恰為軸對稱圖形時,θ的值為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點A,B,點B的橫坐標是4.點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方.
(1)求k的值;
(2)設(shè)直線PA,PB與x軸分別交于點M,N,求證:△PMN是等腰三角形;
(3)設(shè)點Q是反比例函數(shù)圖象上位于P,B之間的動點(與點P,B不重合),連接AQ,BQ,比較∠PAQ與∠PBQ的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把代數(shù)式通過配湊等手段,得到局部完全平方式,再進行有關(guān)運算和解題,這種解題方法叫做配方法.
如:①用配方法分解因式:a2+6a+8,
解:原式=a2+6a+8+1﹣1=a2+6a+9﹣1=(a+2)(a+4)
②M=a2﹣2ab+2b2﹣2b+2,利用配方法求M的最小值,
解:a2﹣2ab+2b2﹣2b+2=a2﹣2ab+b2+b2﹣2b+1+1=(a﹣b)2+(b﹣1)2+1
∵(a﹣b)2≥0,(b﹣1)2≥0
∴當a=b=1時,M有最小值1.
請根據(jù)上述材料解決下列問題:
(1)在橫線上添加一個常數(shù),使之成為完全平方式:x2﹣x+ .
(2)用配方法因式分解:x2﹣4xy+3y2.
(3)若M=x2+2x﹣1,求M的最小值.
(4)已知x2+2y2+z2﹣2xy﹣2y﹣4z+5=0,則x+y+z的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com