【題目】綜合題
(1)如圖①所示,P是等邊△ABC內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAP繞B點(diǎn)順時(shí)針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAP繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△BCQ,連接PQ.當(dāng)PA、PB、PC滿足什么條件時(shí),∠PQC=90°?請說明.
【答案】
(1)證明:由旋轉(zhuǎn)的性質(zhì)知:BP=BQ、PA=QC,∠ABP=∠CBQ;
∵△ABC是等邊三角形,
∴∠ABC=60°,即∠CBP+∠ABP=60°;
∵∠ABP=∠CBQ,
∴∠CBP+∠CBQ=60°,即∠PBQ=60°;
又∵BP=BQ,∴△BPQ是等邊三角形;
∴BP=PQ;
∵PA2+PB2=PC2,即PQ2+QC2=PC2;
∴△PQC是直角三角形,且∠PQC=90°
(2)解:PA2+2PB2=PC2;理由如下:
同(1)可得:△PBQ是等腰直角三角形,則PQ= PB,即PQ2=2PB2;
由旋轉(zhuǎn)的性質(zhì)知:PA=QC;
在△PQC中,若∠PQC=90°,則PQ2+QC2=PC2,即PA2+2PB2=PC2;
故當(dāng)PA2+2PB2=PC2時(shí),∠PQC=90°
【解析】(1)由旋轉(zhuǎn)的性質(zhì)知:BP=BQ、PA=QC,∠ABP=∠CBQ,再根據(jù)△ABC是等邊三角形,可得∠ABC=60°,結(jié)合已知條件可證△BPQ是等邊三角形,在△PQC中應(yīng)用勾股定理的逆定理可得△PQC是直角三角形,且∠PQC=90°;(2)方法同(1)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降,今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為90萬元,今年銷售額只有80萬元.
(1)今年5月份A款汽車每輛售價(jià)多少萬元?
(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知B款汽車每輛進(jìn)價(jià)為7.5萬元,每輛售價(jià)為10.5萬元,A款汽車每輛進(jìn)價(jià)為6萬元,若賣出這兩款汽車15輛后獲利不低于38萬元,問B款汽車至少賣出多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四個三角形,分別滿足下列條件:(1)一個角等于另外兩個內(nèi)角之和;(2)三個內(nèi)角之比為3:4:5;(3)三邊之比為5:12:13;(4)三邊長分別為5,24,25.其中直角三角形有( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P位于第一象限,到x軸的距離為2,到y(tǒng)軸的距離為5,則點(diǎn)P的坐標(biāo)為( )
A.(2,5)B.(5,2)C.(2,5)或(-2,5)D.(5,2)或(-5,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b,c是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結(jié)論:
①以a2 , b2 , c2的長為邊的三條線段能組成一個三角形;②以,,的長為邊的三條線段能組成一個三角形;③以a+b,c+h,h的長為邊的三條線段能組成直角三角形;④以,,的長為邊的三條線段能組成直角三角形,正確結(jié)論的序號為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=32cm,AB=24cm,點(diǎn)F從點(diǎn)B出發(fā)沿B→C方向運(yùn)動,點(diǎn)E從點(diǎn)D出發(fā)沿D→A方向運(yùn)動,點(diǎn)E和點(diǎn)F的速度都為3cm/s,則當(dāng)點(diǎn)E運(yùn)動s后,線段EF剛好被AC垂直平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)E是AD邊上一點(diǎn),BE=BC.
(1)求證:EC平分∠BED.
(2)過點(diǎn)C作CF⊥BE,垂足為點(diǎn)F,連接FD,與EC交于點(diǎn)O,求FD·EC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.0.25是0.5的一個平方根B.49的平方根是7
C.正數(shù)有兩個平方根,且這兩個平方根之和等于0D.負(fù)數(shù)有一個平方根
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com