在平面直角坐標(biāo)系內(nèi)有兩點(diǎn)A(-2,0),B(數(shù)學(xué)公式,0),CB所在直線(xiàn)為y=2x+b,
(1)求b與C的坐標(biāo);
(2)連接AC,求證:△AOC∽△COB;
(3)求過(guò)A,B,C三點(diǎn)且對(duì)稱(chēng)軸平行于y軸的拋物線(xiàn)解析式;
(4)在拋物線(xiàn)上是否存在一點(diǎn)P(不與C重合),使得S△ABP=S△ABC?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

解:(1)以B(,0)代入y=2x+b,2×+b=0,
得:b=-1則有C(0,-1).

(2)∵OC⊥AB,且,
∴△AOC∽△COB.

(3)設(shè)拋物線(xiàn)的解析式為y=ax2+bx+c,以三點(diǎn)的坐標(biāo)代入解析式得方程組:
,
所以y=x2+x-1.

(4)假設(shè)存在點(diǎn)P(x,y)
依題意有,
得:|y|=|OC|=1.
①當(dāng)y=1時(shí),有x2+x-1=1
即x2+x-2=0,
解得:,
②當(dāng)y=-1時(shí),有x2+x-1=-1,
即x2+x=0,
解得:x3=0(舍去),
∴存在滿(mǎn)足條件的點(diǎn)P,它的坐標(biāo)為:
分析:(1)將B的坐標(biāo)代入CB的解析式可得b的值,進(jìn)而可得C的坐標(biāo);
(2)根據(jù)BC的坐標(biāo),易得△AOC與△COD中,對(duì)應(yīng)邊的比值相等,再根據(jù)OC⊥AB,易得兩個(gè)三角形相似;(3)設(shè)拋物線(xiàn)的解析式為y=ax2+bx+c,以三點(diǎn)的坐標(biāo)代入解析式得方程組,解可得abc的值,即可得拋物線(xiàn)的解析式;
(4)假設(shè)存在并設(shè)出其坐標(biāo),根據(jù)三角形面積相等易得|y|=|OC|=1,分y的值為1與-1兩種情況討論,進(jìn)而可得答案.
點(diǎn)評(píng):[點(diǎn)評(píng)]此題綜合性較強(qiáng),4個(gè)小題的坡度設(shè)置較好,區(qū)分度也把握地很好,是道考查學(xué)生初中三年學(xué)習(xí)成果的好題,第4小題中不要忘了絕對(duì)值,否則會(huì)導(dǎo)致少解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系內(nèi)有兩點(diǎn)A(-2,0),B(
12
,0),CB所在直線(xiàn)為y=2x+b,
(1)求b與C的坐標(biāo);
(2)連接AC,求證:△AOC∽△COB;
(3)求過(guò)A,B,C三點(diǎn)且對(duì)稱(chēng)軸平行于y軸的拋物線(xiàn)解析式;
(4)在拋物線(xiàn)上是否存在一點(diǎn)P(不與C重合),使得S△ABP=S△ABC?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、在平面直角坐標(biāo)系內(nèi)有一個(gè)平行四邊形ABCD,如果將此四邊形水平向x軸正方向移動(dòng)3個(gè)單位,則各點(diǎn)坐標(biāo)的變化特征是
縱坐標(biāo)不變
、
橫坐標(biāo)都加上3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系內(nèi)有一點(diǎn)P(5,12),那么OP與x軸正半軸的夾角α的余弦值
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系內(nèi)有線(xiàn)段AB、CD,其中A(3,1),B(4,3),C(6,2),D(8,6),若CD上有一點(diǎn)P的坐標(biāo)為(a,b),則直線(xiàn)OP與AB的交點(diǎn)的坐標(biāo)為
1
2
a,
1
2
b
1
2
a,
1
2
b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在平面直角坐標(biāo)系內(nèi)有4個(gè)點(diǎn):O(0,0),A(5,0),B(5,3),C(0,3),則四邊形OABC的形狀是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案