【題目】如圖,正五邊形ABCDE的邊長(zhǎng)為2,連結(jié)AC、AD、BE,BE分別與AC和AD相交于點(diǎn)F、G,連結(jié)DF,給出下列結(jié)論:①∠FDG=18°;②FG=3﹣ ;③(S四邊形CDEF2=9+2 ;④DF2﹣DG2=7﹣2 .其中結(jié)論正確的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

【答案】B
【解析】解:①∵五方形ABCDE是正五邊形,
∴AB=BC,∠ABC=180°﹣ =108°,
∴∠BAC=∠ACB=36°,
∴∠ACD=108°﹣36°=72°,
同理得:∠ADE=36°,
∵∠BAE=108°,AB=AE,
∴∠ABE=36°,
∴∠CBF=108°﹣36°=72°,
∴BC=FC,
∵BC=CD,
∴CD=CF,
∴∠CDF=∠CFD= =54°,
∴∠FDG=∠CDE﹣∠CDF﹣∠ADE=108°﹣54°﹣36°=18°;
所以①正確;
②∵∠ABE=∠ACB=36°,∠BAC=∠BAF,
∴△ABF∽△ACB,
,
∴ABED=ACEG,
∵AB=ED=2,AC=BE=BG+EF﹣FG=2AB﹣FG=4﹣FG,EG=BG﹣FG=2﹣FG,
∴22=(2﹣FG)(4﹣FG),
∴FG=3+ >2(舍),F(xiàn)G=3﹣
所以②正確;
③如圖1,

∵∠EBC=72°,∠BCD=108°,
∴∠EBC+∠BCD=180°,
∴EF∥CD,
∵EF=CD=2,
∴四邊形CDEF是平行四邊形,
過(guò)D作DM⊥EG于M,
∵DG=DE,
∴EM=MG= EG= (EF﹣FG)= (2﹣3+ )= ,
由勾股定理得:DM= = = ,
∴(S四邊形CDEF2=EF2DM2=4× =10+2 ;
所以③不正確;
④如圖2,連接EC,

∵EF=ED,
CDEF是菱形,
∴FD⊥EC,
∵EC=BE=4﹣FG=4﹣(3﹣ )=1+ ,
∴S四邊形CDEF= FDEC=2× ,
×FD×(1+ )= ,
FD2=10﹣2 ,
∴DF2﹣DG2=10﹣2 ﹣4=6﹣2
所以④不正確;
本題正確的有兩個(gè),
故答案為:B.
①根據(jù)正五邊形的性質(zhì)證明△ABC,△ABE,△ADE是等腰三角形,求出∠ABC,∠ACB,∠BCD,∠CDE及∠ADE的度數(shù),再證明CD=CF,根據(jù)等邊對(duì)等角得出∠CDF=∠CFD=54°,然后根據(jù)∠FDG=∠CDE﹣∠CDF﹣∠ADE,計(jì)算即可求出∠FDG的度數(shù),可對(duì)①作出判斷;②先利用相似三角形的判定證明△ABF∽△ACB,得出ABED=ACEG,建立方程求出FG的長(zhǎng),就可對(duì)②作出判斷;③先根據(jù)已知證明四邊形CDEF是平行四邊形,過(guò)D作DM⊥EG于M,求出EM的長(zhǎng),再利用勾股定理求出DM的長(zhǎng),然后求出(S四邊形CDEF2的值,可對(duì)③作出判斷;④根據(jù)菱形的判斷方法證明CDEF是菱形,得出FD⊥EC,求出EC的長(zhǎng),再根據(jù)菱形的面積公式建立方程求出FD2的長(zhǎng),然后求出DF2﹣DG2即可,就可對(duì)④作出判斷;即可得出答案。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小方格的邊長(zhǎng) 1,點(diǎn) A、B、C 是格點(diǎn).

1)計(jì)算:AB= BC= ;AC=

2)只用直尺(不帶刻度)作出 AB 邊上的高 CH(保留作圖 痕跡)CH= ;

3)只用直尺(不帶刻度)作出 AC 邊上的高 BG(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,線(xiàn)段直線(xiàn),垂足為,平移線(xiàn)段,使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)記為點(diǎn).

操作與思考:

1)畫(huà)出線(xiàn)段和直線(xiàn);

2)直線(xiàn)的位置關(guān)系是_______,理由是:____________________________

線(xiàn)段的數(shù)量關(guān)系是_______,理由是:____________________________.

實(shí)踐與應(yīng)用:

3)如圖,等邊和等邊的面積分別為35,點(diǎn)、、在一直線(xiàn)上,則的面積是_____________.

4)如圖,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)用三種不同方法,求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,一個(gè)正方體鐵塊放置在圓柱形水槽內(nèi),現(xiàn)以一定的速度往水槽中注水,28s時(shí)注滿(mǎn)水槽.水槽內(nèi)水面的高度y(cm)與注水時(shí)間x(s)之間的函數(shù)圖象如圖②所示.

(1)正方體的棱長(zhǎng)為cm;
(2)求線(xiàn)段AB對(duì)應(yīng)的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(3)如果將正方體鐵塊取出,又經(jīng)過(guò)t(s)恰好將此水槽注滿(mǎn),直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車(chē)自駕出游。

根據(jù)以上信息,解答下列問(wèn)題:
(1)設(shè)租車(chē)時(shí)間為 小時(shí),租用甲公司的車(chē)所需費(fèi)用為 元,租用乙公司的車(chē)所需費(fèi)用為 元,分別求出 關(guān)于 的函數(shù)表達(dá)式;
(2)請(qǐng)你幫助小明計(jì)算并選擇哪個(gè)出游方案合算。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的內(nèi)接正五邊形ABCDE的對(duì)角線(xiàn)AD與BE相交于點(diǎn)G,AE=2,則EG的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,請(qǐng)結(jié)合圖,探索這兩個(gè)角之間的關(guān)系,并說(shuō)明理由.

(1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是

證明:

(2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是 ;

證明:

(3)經(jīng)過(guò)上述證明,我們可得出結(jié)論,如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角 ;

(4)若這兩個(gè)角的兩邊分別平行,且一個(gè)角比另一個(gè)角的3倍少60°,則這兩個(gè)角分別是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O半徑為4cm,其內(nèi)接正六邊形ABCDEF,點(diǎn)P,Q同時(shí)分別從A,D兩點(diǎn)出發(fā),以1cm/s速度沿AF,DC向終點(diǎn)F,C運(yùn)動(dòng),連接PB,QE,PE,BQ.設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)求證:四邊形PEQB為平行四邊形;
(2)填空:
①當(dāng)t=s時(shí),四邊形PBQE為菱形;
②當(dāng)t=s時(shí),四邊形PBQE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:①兩條直線(xiàn)相交,一個(gè)角的兩鄰補(bǔ)角相等,則這兩條直線(xiàn)垂直;②同位角相等;③點(diǎn)(5,6)與點(diǎn)(6,5)表示同一點(diǎn);④若兩個(gè)同旁?xún)?nèi)角互補(bǔ),則它們的角平分線(xiàn)互相垂直;⑤點(diǎn)(,5)在第二象限.其中假命題的個(gè)數(shù)為( 

A. 4B. 3C. 2D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案