【題目】李大叔想用籬笆圍成一個(gè)周長為80米的矩形場地,矩形面積S(單位:平方米)隨矩形一邊長x(單位:米)的變化而變化.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x是多少時(shí),矩形場地面積S最大?最大面積是多少?
【答案】(1)S=﹣x2+40x,0<x<40;(2)當(dāng)x是20時(shí),矩形場地面積S最大,最大面積是400.
【解析】
(1)由題目分析可知,矩形的另一邊長應(yīng)為=40-x,由矩形的面積公式可以得出S與x之間的函數(shù)關(guān)系式;
(2)根據(jù)二次函數(shù)的性質(zhì),以及x的取值范圍,求出二次函數(shù)的最大值.
(1)由分析可得:S=x×(40﹣x)=﹣x2+40x,且有0<x<40,
所以S與x之間的函數(shù)關(guān)系式為:S=x×(40﹣x)=﹣x2+40x,自變量x的取值范圍為:0<x<40;
(2)S=﹣x2+40x=﹣(x﹣20)2+400,
所以當(dāng)x=20時(shí),有S的最大值S=400,
答:當(dāng)x是20時(shí),矩形場地面積S最大,最大面積是400.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個(gè)碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測得小船在它的北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長)和A、B兩個(gè)碼頭間的距離(結(jié)果都保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面長為34米的墻,用鐵柵欄圍成一個(gè)矩形自行車場地ABCD,在AB和BC邊各有一個(gè)2米寬的小門(不用鐵柵欄).設(shè)矩形ABCD的邊AD長為x米,AB長為y米,矩形的面積為S平方米,且x<y.
(1)若所用鐵柵欄的長為40米,求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)在(1)的條件下,求S與x的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場地的面積為192平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,點(diǎn)E是BA延長線上一點(diǎn),點(diǎn)M、N分別為邊AB、BC上的點(diǎn),且AM=BN=1,連接CM、ND,過點(diǎn)M作MF∥ND與∠EAD的平分線交于點(diǎn)F,連接CF分別與AD、ND交于點(diǎn)G、H,連接MH,則下列結(jié)論正確的有( )個(gè)
①MC⊥ND;②sin∠MFC=;③(BM+DG)=AM+AG;④S△HMF=
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn),且對稱軸為直線,其部分圖象如圖所示. 對于此拋物線有如下四個(gè)結(jié)論:
①;②;
③若,則時(shí)的函數(shù)值小于時(shí)的函數(shù)值;
④點(diǎn)不在此拋物線上. 其中正確結(jié)論的序號是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AC=DC,AC⊥DC,直線MN經(jīng)過點(diǎn)A,作DB⊥MN,垂足為B,連接CB.
(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;
(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;
②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;
(3)在MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線,直線
(1)當(dāng)m=0時(shí),若直線經(jīng)過此拋物線的頂點(diǎn),求b的值
(2)將此拋物線夾在之間的部分(含交點(diǎn))圖象記為,若,
①判斷此拋物線的頂點(diǎn)是否在圖象上,并說明理由;
②圖象上是否存在這樣的兩點(diǎn):,其中?若存在,求相應(yīng)的和的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2mx+m2+m-1(m為常數(shù)).
(1)求證:不論m為何值,該二次函數(shù)的圖像與x軸總有兩個(gè)公共點(diǎn);
(2)將該二次函數(shù)的圖像向下平移k(k>0)個(gè)單位長度,使得平移后的圖像經(jīng)過點(diǎn)(0,-2),則k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)是斜邊的中點(diǎn).點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)出發(fā)以一定的速度沿射線方向運(yùn)動(dòng),規(guī)定當(dāng)點(diǎn)到終點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為秒,連接、.
(1)填空:______;
(2)當(dāng)且點(diǎn)運(yùn)動(dòng)的速度也是時(shí),求證:;
(3)若動(dòng)點(diǎn)以的速度沿射線方向運(yùn)動(dòng),在點(diǎn)、點(diǎn)運(yùn)動(dòng)過程中,如果存在某個(gè)時(shí)間,使得的面積是面積的兩倍,請你求出時(shí)間的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com