(2012•天水)如圖,正方形ABCD中,E是BC邊上一點,以E為圓心、EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為( )

A.
B.
C.
D.
【答案】分析:兩圓相外切,則圓心距等于兩圓半徑的和.利用勾股定理和銳角三角函數(shù)的定義求解.
解答:解:設(shè)正方形的邊長為y,EC=x,
由題意知,AE2=AB2+BE2,
即(y+x)2=y2+(y-x)2,
化簡得,y=4x,
∴sin∠EAB==
故選D.
點評:本題綜合性較強,要把有關(guān)圓的知識聯(lián)系起來使用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•天水)如圖,等邊△ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60°,則CD的長為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天水)如圖,已知拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由.
(3)P是直線x=1右側(cè)的該拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A、P、M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天水)如圖,已知直線AB、CD相交于點O,∠1=80°,如果DE∥AB,那么∠D的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天水)如圖,四邊形ABCD內(nèi)接于⊙O,已知直徑AD=6,∠ABC=120°,∠ACB=45°,連接OB交AC于點E.
(1)求AC的長.
(2)求CE:EA的值.
(3)在CB的延長線上取一點P,使CB=
12
BP,求證:直線PA與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•天水)如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與C重合,再展開,折痕EF交AD邊于點E,交BC邊于點F,交AC于點O,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)過E點作AD的垂線EP交AC于點P,求證:2AE2=AC•AP;
(3)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長.

查看答案和解析>>

同步練習冊答案