【題目】如圖,在菱形中,,,點(diǎn),,分別為線段,上的任意一點(diǎn),則的最小值為__________

【答案】

【解析】

根據(jù)菱形的對(duì)稱性,在AB上找到點(diǎn)P關(guān)于BD的對(duì)稱點(diǎn),過點(diǎn)QCDQ,交BD于點(diǎn)K,連接PK,過點(diǎn)AAECDE,根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時(shí)最小,且最小值為的長,,然后利用銳角三角函數(shù)求AE即可.

解:根據(jù)菱形的對(duì)稱性,在AB上找到點(diǎn)P關(guān)于BD的對(duì)稱點(diǎn),過點(diǎn)QCDQ,交BD于點(diǎn)K,連接PK,過點(diǎn)AAECDE

根據(jù)對(duì)稱性可知:PK=K,

∴此時(shí)=,根據(jù)垂線段最短和平行線之間的距離處處相等,

∴此時(shí)最小,且最小值為的長,

∵在菱形中,,

,∠ADE=180°-∠A=60°

RtADE中,AE=AD·sinADE=

的最小值為

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AB=AC,以AB為直徑作⊙O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D于點(diǎn)H,連接DE交線段OA于點(diǎn)F

1)試猜想直線DH與⊙O的位置關(guān)系,并說明理由;

2)若AE=AH,EF=4,求DF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字12,3

1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為   ;

2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坡度i1的斜坡AB上立有一電線桿EF,工程師在點(diǎn)A處測得E的仰角為60°,沿斜坡前進(jìn)20米到達(dá)B,此時(shí)測得點(diǎn)E的仰角為15°,現(xiàn)要在斜坡AB上找一點(diǎn)P,在P處安裝一根拉繩PE來固定電線桿,以使EF保持豎直,為使拉繩PE最短,則FP的長度約為_____.(參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線yk≠0)與直線yax+ba≠0)交于A,B兩點(diǎn),直線AB分別交x軸,y軸于C、D兩點(diǎn),若OAOCA點(diǎn)坐標(biāo)為(43).

1)分別求出雙曲線與直線的函數(shù)表達(dá)式;

2)若P為雙曲線上一點(diǎn),且橫坐標(biāo)為2,H為直線AB上一點(diǎn),且PH+HC最小,延長PHx軸于點(diǎn)E,將線段OE沿x軸平移得線段O'E',在平移過程中,是否存在某個(gè)位置使|BO'AE'|的值最大值,求出最大值并求出此時(shí)E點(diǎn)坐標(biāo).

3)在(2)的情況下,將直線OA沿線段CE平移,平移過程中交yx0)的圖象于MM與點(diǎn)A不重合)交x軸于點(diǎn)N,在平面內(nèi)找一點(diǎn)G,使M、N,EG為頂點(diǎn)的四邊形為矩形?直接寫出G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AB5,BC4,點(diǎn)D為邊AC上的動(dòng)點(diǎn),作菱形DEFG,使點(diǎn)EF在邊AB上,點(diǎn)G在邊BC.若這樣的菱形能作出兩個(gè),則AD的取值范圍是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】岳陽市整治農(nóng)村“空心房”新模式,獲評(píng)全國改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對(duì)轄區(qū)內(nèi)“空心房”進(jìn)行整治,騰退土地1200公頃用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600公頃.

1)求復(fù)耕土地和改造土地面積各為多少公頃;

2)該地區(qū)對(duì)需改造的土地進(jìn)行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場,要求休閑小廣場總面積不超過花卉園總面積的,求休閑小廣場的總面積最多為多少公頃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,EF,EB⊙O的弦,且EF=EB,EFAB交于點(diǎn)C,連接OF,若∠AOF=40°,則∠F的度數(shù)是(

A.20°B.35°C.40°D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)

1)如圖1,若點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸交直線于點(diǎn),作于點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),點(diǎn)軸上一動(dòng)點(diǎn),連接.當(dāng)最長時(shí),求的最小值;

2)如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),將沿直線平移得到,直線軸交于點(diǎn),連接,將 沿邊翻折得 ,連接, ,當(dāng)是等腰三角形時(shí),求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案