如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點E,CF⊥AF,且CF=CE.

(1)求證:CF是⊙O的切線;

(2)若,求的值

 

【答案】

(1)證明見解析;(2).

【解析】

試題分析:(1)首先連接OC,由CD⊥AB,CF⊥AF,CF=CE,即可判定AC平分∠BAF,由圓周角定理即可得∠BOC=2∠BAC,則可證得∠BOC=∠BAF,即可判定OC∥AF,即可證得CF是⊙O的切線;

(2)由垂徑定理可得CE=DE,即可得SCBD=2SCEB,由△ABC∽△CBE,根據(jù)相似三角形的面積比等于相似比的平方,易求得△CBE與△ABC的面積比,繼而可求得的值.

試題解析:(1)證明:連接OC.

∵CE⊥AB,CF⊥AF,CE=CF,

∴AC平分∠BAF,即∠BAF=2∠BAC.

∵∠BOC=2∠BAC,

∴∠BOC=∠BAF.

∴OC∥AF.

∴CF⊥OC.

∴CF是⊙O的切線.

(2)解:∵AB是⊙O的直徑,CD⊥AB,

∴CE=ED,∠ACB=∠BEC=90°.

∴SCBD=2SCEB,∠BAC=∠BCE,

∴△ABC∽△CBE.

==(sin∠BAC)2==

=

考點: 1.切線的判定;2.圓周角定理;3.相似三角形的判定與性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( 。
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,則水管的長為
40m
40m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步練習(xí)冊答案