【題目】若以A(﹣0.5,0)、B(2,0)、C(0,1)三點(diǎn)為頂點(diǎn)要畫平行四邊形,則第四個(gè)頂點(diǎn)不可能在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】C
【解析】解:根據(jù)題意畫出圖形,如圖所示:
分三種情況考慮:①以CB為對(duì)角線作平行四邊形ABD1C,此時(shí)第四個(gè)頂點(diǎn)D1落在第一象限;
②以AC為對(duì)角線作平行四邊形ABCD2 , 此時(shí)第四個(gè)頂點(diǎn)D2落在第二象限;
③以AB為對(duì)角線作平行四邊形ACBD3 , 此時(shí)第四個(gè)頂點(diǎn)D3落在第四象限,
則第四個(gè)頂點(diǎn)不可能落在第三象限.
故選:C.
【考點(diǎn)精析】掌握平行四邊形的判定是解答本題的根本,需要知道兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式(組)
(1) (在數(shù)軸上把解集表示出來(lái))
(2) (并寫出不等式的整數(shù)解.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B兩點(diǎn)是直線AB與x軸的正半軸,y軸的正半軸的交點(diǎn),且OA,OB的長(zhǎng)分別是x2﹣14x+48=0的兩個(gè)根(OA>OB),射線BC平分∠ABO交x軸于C點(diǎn),若有一動(dòng)點(diǎn)P以每秒1個(gè)單位的速度從B點(diǎn)開始沿射線BC移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求OA,OB的長(zhǎng);
(2)設(shè)△APB和△OPB的面積分別為s1 , s2 , 求s1:s2;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,△OPB可能是等腰三角形嗎?若可能,直接寫出時(shí)間t;若不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax 2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),頂點(diǎn)為D,點(diǎn)P是拋物線的對(duì)稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),且與直線CD相切,則點(diǎn)P的坐標(biāo)為_______________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題:
(1)(﹣1)2012+(π﹣3.14)0﹣(﹣ )﹣1;
(2)a2bc3(﹣2a2b2c)2;
(3)(4a3b﹣6a2b22ab)÷2ab;
(4)x2﹣(x+2)(x﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面幾種三角形:
①有兩個(gè)角為60°的三角形;
②三個(gè)外角都相等的三角形;
③一條邊上的高也是這條邊上的中線的三角形;
④有一個(gè)角為60°的等腰三角形.
其中是等邊三角形的有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,如果ɑ,β都為銳角,且tanɑ=,tanβ=,則ɑ+β=___________;
(2)如果ɑ,β都為銳角,當(dāng)tanɑ=5,tanβ=時(shí),在圖2的正方形網(wǎng)格中,利用已作出的銳角ɑ,畫出∠MON,使得∠MON=ɑ-β.此時(shí)ɑ-β=__________度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com