分析 (1)在矩形OABC中,利用邊長之間的關(guān)系和面積公式即可求得OC,OA的長,再利用已知結(jié)合O′是OE的中點得出答案;
(2)連接O′D,通過證明△OCE≌△ABE得到DF⊥O′D,所以DF為⊙O′切線;
(3)分兩種情況進(jìn)行分析:①當(dāng)AO=AP;②當(dāng)OA=OP,從而得到在直線BC上,除了E點外,既存在⊙O′內(nèi)的點P,又存在⊙O′外的點P2、P3、P4,它們分別使△AOP為等腰三角形.
解答 (1)解:在矩形OABC中,設(shè)OC=x,則OA=x+2
∴x(x+2)=15
∴x1=3,x2=-5
∵x2=-5(不合題意,舍去)
∴OC=3,OA=5;
∵點E為BC的中點,
∴EC=$\frac{5}{2}$,
∵O′是OE的中點,
∴O′($\frac{5}{4}$,$\frac{3}{2}$);
(2)證明:如圖,連接O′D;
在△0CE和△ABE中,
∵$\left\{\begin{array}{l}{CO=AB}\\{∠OCB=∠ABC=90°}\\{CE=BE=\frac{5}{2}}\end{array}\right.$,
∴△0CE≌△ABE(SAS),
∴EA=EO,
∴∠1=∠2;
∵在⊙O′中,O′O=O′D,
∴∠1=∠3,
∴∠3=∠2,
∴O′D∥AE;
∵DF⊥AE,
∴DF⊥O′D,
∵點D在⊙O′上,O′D為⊙O′的半徑,
∴DF為⊙O′切線;
(3)解:不同意.理由如下:
①當(dāng)A0=AP時,以點A為圓心,以AO為半徑畫弧交BC于P1和P4兩點
過P1點作P1H⊥OA于點H,P1H=0C=3;
∵APl=OA=5,
∴AH=4,
∴OH=l,
則點P1(1,3),同理可得:P4(9,3);
②當(dāng)OA=OP時,
同上可求得P2(4,3),P3(-4,3),
故在直線BC上,除了E點外,既存在⊙O′內(nèi)的點P1,又存在⊙O′外的點P2、P3、P4,它們分別使△AOP為等腰三角形.
點評 此題主要考查了矩形的性質(zhì)和圓中的有關(guān)性質(zhì),等腰三角形的判定以及一元二次方程在幾何圖形中的運用.要熟練掌握這些性質(zhì)才能靈活運用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 50米 | B. | 200米 | C. | 500米 | D. | 600米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$×$\sqrt{3}$=$\sqrt{5}$ | B. | $\sqrt{27}$$÷\sqrt{3}$=9 | C. | $\sqrt{{4}^{2}+{3}^{2}}$=4+3=7 | D. | $\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com