【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點,連接AO并延長,交BC的延長線于點E.
(1)求證:△AOD ≌ △EOC;
(2)連接AC,DE,當∠B∠AEB _______ °時,四邊形ACED是正方形?請說明理由.
【答案】(1)證明見解析(2)當∠B=∠AEB=45°時,四邊形ACED是正方形
【解析】試題分析:(1)根據(jù)平行線的性質(zhì)可得∠D=∠OCE,∠DAO=∠E,再根據(jù)中點定義可得DO=CO,然后可利用AAS證明△AOD≌△EOC;
(2)當∠B=∠AEB=45°時,四邊形ACED是正方形,首先證明四邊形ACED是平行四邊形,再證對角線互相垂直且相等可得四邊形ACED是正方形.
試題解析:證明:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中點,∴OC=OD.在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);
(2)當∠B=∠AEB=45°時,四邊形ACED是正方形.
∵△AOD≌△EOC,∴OA=OE.
又∵OC=OD,∴四邊形ACED是平行四邊形.
∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.
∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∴∠COE=∠BAE=90°,∴ACED是菱形.∵AB=AE,AB=CD,∴AE=CD,∴菱形ACED是正方形.
故答案為:45.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒
當t = 4時,求線段PQ的長度
(2)當t為何值時,△PCQ是等腰三角形?
(3)當t為何值時,△PCQ的面積等于16cm2?
(4)當t為何值時,△PCQ∽△ACB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小剛將一個正方形紙片剪去一個寬為5cm的長條后,再從剩下的長方形紙片上剪去一個寬為6cm的長條.如果兩次剪下的長條面積正好相等,求兩個所剪下的長條的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:﹣32+|2﹣5|÷+(﹣2)3×(﹣1)2015
(2)解方程:﹣=3.
(3)解方程:6(x-2)=8x+3.
(4)解方程: x-=2-.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+與反比例函數(shù)y=(x<0)的圖象交于A(-4,a)、B(-1,b)兩點,AC⊥x軸于C,BD⊥y軸于D.
(1)求a 、b及k的值;
(2)連接OA,OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連結CD和EF.
(1)求證:四邊形CDEF是平行四邊形;
(2)求四邊形BDEF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點,若∠AEF=54,則∠B=( )
A. 54 B. 60 C. 72 D. 66
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,劉星同學觀察得出了下面四條信息:
(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你認為其中錯誤的有( )
A.2個 B.3個 C.4個 D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點D,過點D作DE∥BC交AC的延長線于點E.
(1)試判斷DE與⊙O的位置關系,并證明你的結論;
(2)若∠E=60°,⊙O的半徑為5,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com