【題目】解不等式與不等式組:

1)解不等式,并把它的解集在數(shù)軸上表示出來;

2)解不等式組并求出它的所有整數(shù)解

【答案】1,數(shù)軸見解析;(2,整數(shù)解0,12,3

【解析】

1)根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.

2)分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,繼而可得其整數(shù)解.

解:(1)去分母,得

去括號,得

移項,得

合并同類項,得

兩邊都除以,得

這個不等式的解集在在數(shù)軸上表示如圖所示

2)解不等式,得

解不等式,得

在同一數(shù)軸上表示不等式①②的解集,

如圖所示:

所以,不等式組的解集是:

該不等式組的所有整數(shù)解為0,1,23

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進(jìn)50臺電視機.已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.
(1)若家電商場同時購進(jìn)兩種不同型號的電視機共50臺,用去9萬元,請你研究一下商場的進(jìn)貨方案;
(2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進(jìn)兩種不同型號的電視機方案中,為了使銷售時獲利最多,你選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,弦ACOD.

(1)求證:

(2)若的度數(shù)為,求AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知動點P以每秒2㎝的速度沿圖甲的邊框按從的路徑移動,相應(yīng)的ABP的面積S關(guān)于時間t的函數(shù)圖象如圖乙.若AB=6,試回答下列問題:

(1)圖甲中的BC長是多少?

(2)圖乙中的a是多少?

(3)圖甲中的圖形面積的多少?

(4)圖的b是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應(yīng)點為P′(x1+6,y1+4)。

(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加中考體育測試,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳給其余兩人的機會是均等的,由甲開始傳球,共傳球三次.

1)請利用樹狀圖列舉出三次傳球的所有可能情況;

2)求三次傳球后,球回到甲腳下的概率;

3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個小正方形的邊長都相等,三角形ABC的三個頂點都在格點(小正方形的頂點)上.

1)平移三角形ABC,使頂點A平移到點D的位置,得到三角形DEF,請在圖中畫出三角形DEF;(注:點B的對應(yīng)點為點E

2)若∠A50°,則直線AC與直線DE相交所得銳角的度數(shù)為   °,依據(jù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點EAB上,點DBC上,BD=BE,∠BAD=∠BCE,ADCE相交于點F,試判斷△AFC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則ABP的面積S隨著時間t變化的函數(shù)圖象大致是( 。

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊答案