【題目】如圖,將一矩形紙片OABC放在平面直角坐標(biāo)系中,O(0,0),A(6,0),C(0,3),動(dòng)點(diǎn)F從點(diǎn)O出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿OC向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)秒時(shí),動(dòng)點(diǎn)E從點(diǎn)A出發(fā)以相同的速度沿AO向終點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)E、F其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t:(秒)
(1)OE= ,OF= (用含t的代數(shù)式表示)
(2)當(dāng)t=1時(shí),將△OEF沿EF翻折,點(diǎn)O恰好落在CB邊上的點(diǎn)D處
①求點(diǎn)D的坐標(biāo)及直線DE的解析式;
②點(diǎn)M是射線DB上的任意一點(diǎn),過點(diǎn)M作直線DE的平行線,與x軸交于N點(diǎn),設(shè)直線MN的解析式為y=kx+b,當(dāng)點(diǎn)M與點(diǎn)B不重合時(shí),S為△MBN的面積,當(dāng)點(diǎn)M與點(diǎn)B重合時(shí),S=0.求S與b之間的函數(shù)關(guān)系式,并求出自變量b的取值范圍.
【答案】(1)6-t,+t;(2)①直線DE的解析式為:y=-;②
【解析】
(1)由O(0,0),A(6,0),C(0,3),可得:OA=6,OC=3,根據(jù)矩形的對(duì)邊平行且相等,可得:AB=OC=3,BC=OA=6,進(jìn)而可得點(diǎn)B的坐標(biāo)為:(6,3),然后根據(jù)E點(diǎn)與F點(diǎn)的運(yùn)動(dòng)速度與運(yùn)動(dòng)時(shí)間即可用含t的代數(shù)式表示OE,OF;
(2)①由翻折的性質(zhì)可知:△OPF≌△DPF,進(jìn)而可得:DF=OF,然后由t=1時(shí),DF=OF=,CF=OC-OF=,然后利用勾股定理可求CD的值,進(jìn)而可求點(diǎn)D和E的坐標(biāo);利用待定系數(shù)可得直線DE的解析式;
②先確定出k的值,再分情況計(jì)算S的表達(dá)式,并確認(rèn)b的取值.
(1)∵O(0,0),A(6,0),C(0,3),
∴OA=6,OC=3,
∵四邊形OABC是矩形,
∴AB=OC=3,BC=OA=6,
∴B(6,3),
∵動(dòng)點(diǎn)F從O點(diǎn)以每秒1個(gè)單位長(zhǎng)的速度沿OC向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)秒時(shí),動(dòng)點(diǎn)E從點(diǎn)A出發(fā)以相等的速度沿AO向終點(diǎn)O運(yùn)動(dòng),
∴當(dāng)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒)時(shí),
AE=t,OF=+t,
則OE=OA-AE=6-t,
故答案為:6-t,+t;
(2)①當(dāng)t=1時(shí),OF=1+=,OE=6-1=5,則CF=OC-OF=3-=,
由折疊可知:△OEF≌△DEF,
∴OF=DF=,
由勾股定理,得:CD=1,
∴D(1,3);
∵E(5,0),
∴設(shè)直線DE的解析式為:y=mx+n(k≠0),
把D(1,3)和E(5,0)代入得:,解得:,
∴直線DE的解析式為:y=-;
②∵M(jìn)N∥DE,
∴MN的解析式為:y=-,
當(dāng)y=3時(shí),-=3,x=(b-3)=b-4,
∴CM=b-4,
分三種情況:
i)當(dāng)M在邊CB上時(shí),如圖2,
∴BM=6-CM=6-(b-4)=10-b,
DM=CM-1=b-5,
∵0≤DM<5,即0≤b-5<5,
∴≤b<,
∴S=BMAB=×3(10b)=15-2b=-2b+15(≤b<);
ii)當(dāng)M與點(diǎn)B重合時(shí),b=,S=0;
iii)當(dāng)M在DB的延長(zhǎng)線上時(shí),如圖3,
∴BM=CM-6=b-10,
DM=CM-1=b-5,
∵DM>5,即b-5>5,
∴b>,
∴S=
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動(dòng).設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).
(1)AC=__cm,BC=__cm;
(2)當(dāng)t為何值時(shí),AP=PQ;
(3)當(dāng)t為何值時(shí),PQ=1cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位為1的方格紙上,……,都是斜邊在軸上,斜邊長(zhǎng)分別為2,4,6……的等腰直角三角形,若的頂點(diǎn)坐標(biāo)分別為,則依圖中所示規(guī)律,的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,對(duì)角線AC,BD相交于O,BD=2AD,E,F,G分別是OC,OD,AB的中點(diǎn),下列結(jié)論
①BE⊥AC
②四邊形BEFG是平行四邊形
③EG=GF
④EA平分∠GEF
其中正確的是( 。
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,且OA=OB
(1)求證:四邊形ABCD是矩形;
(2)若AB=5,∠AOB=60°,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD
其中正確結(jié)論的為______(請(qǐng)將所有正確的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011貴州安順,17,4分)已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解決數(shù)學(xué)問題的過程中,我們常用到“分類討論”的數(shù)學(xué)思想,下面是運(yùn)用分類討論的數(shù)學(xué)思想解決問題的過程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的“探究”.
(提出問題)三個(gè)有理數(shù)a、b、c滿足abc>0,求的值.
(解決問題)由題意得:a,b,c三個(gè)有理數(shù)都為正數(shù)或其中一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù).
①當(dāng)a,b,c都是正數(shù),即a>0,b>0,c>0時(shí),
則:==1+1+1=3;
②當(dāng)a,b,c有一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù)時(shí),設(shè)a>0,b<0,c<0,
即:==1+(1)+(1)=1,所以的值為3或1.
(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問題:
(1)已知a<0,b>0,c>0,則 , , ;
(2)三個(gè)有理數(shù)a,b,c滿足abc<0,求的值;
(3)已知|a|=3,|b|=1,且a<b,求a+b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com