【題目】如圖,正方形ABCD的邊長為4,動點(diǎn)E從點(diǎn)A出發(fā),以每秒2個單位的速度沿A→D→A運(yùn)動,動點(diǎn)G從點(diǎn)A出發(fā),以每秒1個單位的速度沿A→B運(yùn)動,當(dāng)有一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)隨之也停止運(yùn)動.過點(diǎn)G作FG⊥AB交AC于點(diǎn)F.設(shè)運(yùn)動時間為t(單位:秒).以FG為一直角邊向右作等腰直角三角形FGH,△FGH與正方形ABCD重疊部分的面積為S.
(1)當(dāng)t=1.5時,S=________;當(dāng)t=3時,S=________.
(2)設(shè)DE=y1,AG=y2,在如圖所示的網(wǎng)格坐標(biāo)系中,畫出y1與y2關(guān)于t的函數(shù)圖象.并求當(dāng)t為何值時,四邊形DEGF是平行四邊形?
【答案】(1); ;(2)當(dāng)t=或t=4時,四邊形DEGF是平行四邊形.
【解析】試題分析:(1)當(dāng)t=1.5時,如圖①,重疊部分的面積是△FGH的面積,求出即可;當(dāng)t=3時,如圖②,重疊部分的面積是四邊形FGBK的面積,也就是△FGH的面積減去△KBH的面積,求出即可;
(2)進(jìn)行分類討論,列出方程即可求出t的值.
試題解析:當(dāng)t=1.5時,如圖①,重疊部分的面積是△FGH的面積,所以S=;
當(dāng)t=3時,如圖②,重疊部分的面積是四邊形FGBK的面積,也就是△FGH的面積減去△KBH的面積,所以S=×3×3-×2×2=.
(2)由題意可以求得
y1= ;y2=t(0≤t≤4).<
所以y1與y2關(guān)于t的函數(shù)圖象如圖③所示.
因?yàn)檫\(yùn)動過程中,DE∥FG,所以當(dāng)DE=FG時,四邊形DEGF是平行四邊形.
∵FG=AG,
∴DE=AG,
∴y1=y2.由圖象可知,有兩個t值滿足條件:
①當(dāng)0≤t≤2時,由4-2t=t,解得t=;
②當(dāng)2<t≤4時,由2t-4=t,解得t=4.
所以當(dāng)t=或t=4時,四邊形DEGF是平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩車同時從A地出發(fā),在相距900千米的AB兩地間不斷往返行駛,知甲車的速度是每小時25千米,乙車的速度是每小時20千米,則經(jīng)過_____小時甲乙兩車第二次迎面相遇
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
(1)如圖1,可以求出陰影部分的面積是(寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個長方形,它的寬是 , 長是 , 面積是 . (寫成多項(xiàng)式乘法的形式)
(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式 . (用式子表達(dá))
(4)運(yùn)用你所得到的公式,計(jì)算下列各題: ①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)考試后,小明想知道成績是否能排在前一半,那么他應(yīng)該知道本次成績的統(tǒng)計(jì)量是( )
A.平均數(shù)
B.眾數(shù)
C.中位數(shù)
D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個矩形(如圖乙),根據(jù)兩個圖形中陰影部分的面積相等,可以驗(yàn)證( )
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師布置了兩道解方程的作業(yè)題:
(1)選用合適的方法解方程:(x+1)(x+2)=6;
(2)用配方法解方程:2x2+4x-5=0.
以下是小明同學(xué)的作業(yè):
(1)解:由(x+1)(x+2)=6, | (2)解:由2x2+4x-5=0, |
得x+1=2,x+2=3, | 得2x2+4x=5, |
所以x1=1,x2=1. | x2+2x=, |
x2+2x+1=-1, | |
(x+1)2=, | |
x+1=± | |
x1=-1+,x2=-1-. |
請你幫小明檢查他的作業(yè)是否正確,把不正確的改正過來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com