分析 BD=CE,BD⊥CE.利用已知條件證明△BAD≌△CAE,得到BD=CE,∠BDA=∠E=45°,所以∠BDE=∠BDA+∠ADE=90°,即可得到BD⊥CE.
解答 解:BD=CE,BD⊥CE.
∵△ABC與△AED均為等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°,
∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAD=∠CAE,
在△BAD與△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴BD=CE,∠BDA=∠E=45°,
∴∠BDE=∠BDA+∠ADE=90°,
∴BD⊥CE.
點(diǎn)評(píng) 本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 50° | C. | 40° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 同角的余角和補(bǔ)角相等 | |
B. | 三條直線兩兩相交,必定有三個(gè)交點(diǎn) | |
C. | 線段AB就是點(diǎn)A與點(diǎn)B的距離 | |
D. | 兩點(diǎn)確定一條直線 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | k<2 | B. | k≤2 | C. | k≤2且k≠0 | D. | k≥2且k≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 系數(shù)是-$\frac{1}{2}$,次數(shù)是1 | B. | 系數(shù)是$\frac{1}{2}$,次數(shù)是3 | ||
C. | 系數(shù)是$\frac{1}{2}$,次數(shù)是1 | D. | 系數(shù)是-$\frac{1}{2}$,次數(shù)是3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com