如圖13,在ABC中,∠BAC=90,AB=AC,AB是O的直徑,O交BC于點(diǎn)D,DEAC于點(diǎn)E,BE交O于點(diǎn)F,連接AF的延長(zhǎng)線交DE于點(diǎn)P。

(1)求證:DE是O的切線。

(2)求tan∠ABE的值;

(3)若OA=2,求線段AP的長(zhǎng)。

(1)證明:多種方法,如證OD∥AC,DE∥AB ,   則∠ODE=∠DOB=∠CAB=90°,證畢

(2)

(3)利用等角代換或相似:AP=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠ABC,∠ACB的角平分線交于點(diǎn)O,則∠BOC=90°+
1
2
∠A=
1
2
×180°+
1
2
∠A.
如圖2,在△ABC中,∠ABC,∠ACB的兩條三等分角線分別對(duì)應(yīng)交于O1,O2,則∠BO1C=
2
3
×180°+
1
3
∠A,∠BO2C=
1
3
×180°+
2
3
∠A.
根據(jù)以上閱讀理解,你能猜想(n等分時(shí),內(nèi)部有n-1個(gè)點(diǎn))(用n的代數(shù)式表示)∠BOn-1C=( 。
精英家教網(wǎng)
A、
2
n
×180°+
1
n
∠A
B、
1
n
×180°+
2
n
∠A
C、
n
n-1
×180°+
1
n-1
∠A
D、
1
n
×180°+
n-1
n
∠A

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示在△ABC中,AB=13,AD=12,AC=15,CD=9,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

加試題(本小題滿分20分,其中(1)、(2)、(3)題各3分,(4)題11分)
(1)一個(gè)正數(shù)的平方根為3-a和2a+3,則這個(gè)正數(shù)是
81
81

(2)若x2+2x+y2-6y+10=0,則xy=
-1
-1

(3)已知a,b分別是6-
13
的整數(shù)部分和小數(shù)部分,則2a-b=
13
13

(4)閱讀下面的問題,并解答問題:
1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A,B,C的距離分別為3,4,5,求∠APB的度數(shù)是多少?(請(qǐng)?jiān)谙铝袡M線上填上合適的答案)
分析:由于PA,PB,PC不在同一個(gè)三角形中,為了解決本題我們可以將△ABP繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACP′處,此時(shí)可以利用旋轉(zhuǎn)的特征等知識(shí)得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′為
等邊
等邊
三角形,則∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C為
直角
直角
三角形,則∠PP′C=
90
90
度,從而得到∠APB=
150
150
度.
 2)請(qǐng)你利用第1)題的解答方法,完成下面問題:
如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為邊BC上的點(diǎn),且∠EAF=45°,試說明:EF2=BE2+FC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(A類12分)如圖1,矩形ABCD沿著BE折疊后,點(diǎn)C落在AD邊上的點(diǎn)F處.如果∠ABF=50°,求∠CBE的度數(shù).
(B類13分)如圖2,在△ABC中,已知AC=8cm,AB=6cm,E是AC上的點(diǎn),DE平分∠BEC,且DE⊥BC,垂足為D,求△ABE的周長(zhǎng).
(C類14分)如圖3,在△ABC中,已知AD是∠BAC的平分線,DE、DF分別垂直于AB、AC,垂足分別為E、F,且D是BC的中點(diǎn),你認(rèn)為線段EB與FC相等嗎?如果相等,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案