【題目】如圖,在平面直角坐標系中,點O為坐標原點,菱形ABCD的頂點Ax軸的正半軸上,菱形ABCD的邊長為2,頂點C的坐標為

(1)求圖像過點B的反比例函數(shù)的解析式;

(2)求圖像過點A,B的一次函數(shù)的解析式;

(3)在第一象限內,當以上所求一次函數(shù)的圖像在所求反比例函數(shù)的圖像下方時,請直接寫出自變量x的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)菱形的性質可求出B點坐標,利用待定系數(shù)法求出反比例函數(shù)解析式即可;(2)由CD=2,OC=可求出OD的長,進而可求出A點坐標,根據(jù)A、B兩點坐標,利用待定系數(shù)法即可求出一次函數(shù)解析式;(3)根據(jù)圖象交點B的坐標即可得答案.

1)∵四邊形ABCD是菱形,邊長為2,C的坐標為,

,,點B的縱坐標為

設反比例函數(shù)解析式為,把B坐標代入得:

則反比例解析式為

(2)設直線AB解析式為,

C的坐標為

,

,

A點坐標為(1,0),

,代入得:,

解得:,

∴直線AB解析式為.

3)在第一象限內當一次函數(shù)的圖像在反比例函數(shù)的圖像下方時,自變量x的取值范圍為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+6過點A(6,0),B(4,6),與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖1,直線l的解析式為y=x,拋物線的對稱軸與線段BC交于點P,過點P作直線l的垂線,垂足為點H,連接OP,求OPH的面積;

(3)把圖1中的直線y=x向下平移4個單位長度得到直線y=x-4,如圖2,直線y=x-4x軸交于點G.點P是四邊形ABCO邊上的一點,過點P分別作x軸、直線l的垂線,垂足分別為點EF.是否存在點P,使得以P,E,F為頂點的三角形是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AC=BC,∠ACB=90°,AB=4,將ABC繞點A逆時針旋轉60°,得到ADE,連接CE,則CE等于( 。

A. 5B. 6C. 2+2D. 2+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,內接于,,點為弦的中點,的延長線交于點,聯(lián)結,過點于點,聯(lián)結.

1)求證:;

2)如果的半徑為8,且,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為30°,且斜坡AF的坡比為12.則小明從點A走到點D的過程中,他上升的高度為____米;大樹BC的高度為____米(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了幫助本市一名患白血病的高中生,某班15名同學積極捐款,他們捐款數(shù)額如下表:

捐款的數(shù)額(單位:元)

5

10

20

50

100

人數(shù)(單位:個)

2

4

5

3

1

關于這15名同學所捐款的數(shù)額,下列說法正確的是

A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(操作體驗)

如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l作出所有的點P,使得∠APB30°

如圖②,小明的作圖方法如下:

第一步:分別以點A、B為圓心,AB長為半徑作弧,兩弧在AB上方交于點O;

第二步:連接OAOB;

第三步:以O為圓心,OA長為半徑作⊙O,交lP1P2

所以圖中P1P2即為所求的點.

1 在圖②中,連接P1A,P1 B,說明∠A P1B30°;

(方法遷移)

2)如圖③,用直尺和圓規(guī)在矩形ABCD內作出所有的點P,使得∠BPC45°

(不寫作法,保留作圖痕跡)

(深入探究)

3)已知矩形ABCD,BC2ABm,PAD邊上的點,若滿足∠BPC45°的點P恰有兩個,則m的取值范圍為

4)已知矩形ABCDAB3,BC2P為矩形ABCD內一點,且∠BPC135°,若點P繞點A逆時針旋轉90°到點Q,則PQ的最小值為

查看答案和解析>>

同步練習冊答案