【題目】如圖1,點O在直線MN上,∠AOB=90°,OC平分∠MOB.
(1)若∠AOC=則∠BOC=_______,∠AOM=_______,∠BON=_________;
(2)若∠AOC=則∠BON=_______(用含有的式子表示);
(3)將∠AOB繞著點O順時針轉(zhuǎn)到圖2的位置,其他條件不變,若∠AOC=(為鈍角),求∠BON的度數(shù)(用含的式子表示).
【答案】(1)59°40′; 29°20′; 60°40′; (2)2α;
(3)360°-2α.
【解析】
(1)根據(jù)∠BOC=∠AOB-∠AOC進(jìn)行計算即可,
由OC平分∠MOB得∠BOM=2∠BOC,則∠AOM=∠BOM-∠AOB,
∠BON=180°-∠BOM,代入計算即可得出答案;
(2)仿照(1)中方法,先求出∠BOC,再求得∠BOM,最后再代入∠BON=180°-∠BOM化簡即可;
(3)由圖可知∠BOC=∠AOC-∠AOB,然后由角平分線定義得∠BOM=2∠BOC,最后代入∠BON=180°-∠BOM化簡即可得出答案.
解:(1)∠BOC=∠AOB-∠AOC
=90°-30°20′
=59°40′,
∵OC平分∠MOB,
∴∠BOM=2∠BOC=2×59°40′=119°20′,
∴∠AOM=∠BOM-∠AOB
=119°20′-90°
=29°20′,
∠BON=180°-∠BOM
=180°-119°20′
=60°40′.
故答案為:59°40′,29°20′,60°40′;
(2)∠BOC=∠AOB-∠AOC=90°-α,
∵OC平分∠MOB,
∴∠BOM=2∠BOC=2(90°-α)=180°-2α,
∴∠BON=180°-∠BOM
=180°-(180°-2α)
=2α.
故答案為:2α;
(3)由圖可知∠BOC=∠AOC-∠AOB=α-90°,
∵OC平分∠MOB,
∴∠BOM=2∠BOC=2(α-90°)= 2α-180°,
∴∠BON=180°-∠BOM
=180°-(2α-180°)
=360°-2α.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機就可隨用的共享單車.某運營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對收費作如下調(diào)整:一天中,同一個人第一次使用的車費按0.5元收取,每增加一次,當(dāng)次車費就比上次車費減少0.1元,第6次開始,當(dāng)次用車免費.具體收費標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計車費 | 0 | 0.5 | 0.9 | a | b | 1.5 |
同時,就此收費方案隨機調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出a,b的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費用為5800元.試估計:收費調(diào)整后,此運營商在該校投放A品牌共享單車能否獲利?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C,D,E將線段AB分成2:3:4:5四部分,M,P,Q,N分別是AC,CD,DE,EB的中點,且MN=21,求線段PQ的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,軸,點從原點出發(fā)在軸上以單位/秒的速度向軸的正方向運動,運動的時間為秒.平分. (提示:中,,若則,反之亦然)
(1)當(dāng)時, ;
(2)當(dāng)的面積為時,求點運動的時間;
(3)當(dāng)時,求的度數(shù)(用含的式子表示,且不含絕對值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市準(zhǔn)備購進(jìn)甲、乙兩種品牌的文具盒,甲、乙兩種玩具盒的進(jìn)價和售價如下表,預(yù)計購進(jìn)乙品牌文具盒的數(shù)量y(個)與甲品牌玩具盒數(shù)量x(個)之間的函數(shù)關(guān)系如圖所示.
甲 | 乙 | |
進(jìn)價(元) | 15 | 30 |
售價(元) | 20 | 38 |
(1)y與x之間的函數(shù)關(guān)系式是 ;
(2)若超市準(zhǔn)備用不超過6000元購進(jìn)甲、乙兩種文具盒,則至少購進(jìn)多少個甲種文具盒?
(3)在(2)的條件下,寫出銷售所得的利潤W(元)與x(個)之間的關(guān)系式,并求出獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點B的坐標(biāo)為(4,2),直線y=﹣x+與邊AB,BC分別相交于點M,N,函數(shù)y=(x>0)的圖象過點M.
(1)試說明點N也在函數(shù)y=(x>0)的圖象上;
(2)將直線MN沿y軸的負(fù)方向平移得到直線M′N′,當(dāng)直線M′N′與函數(shù)y═(x>0)的圖象僅有一個交點時,求直線M'N′的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸2000元的原料運回工廠,制成每噸5000元的產(chǎn)品運到B地,已知公路運價為2元/(噸·千米),鐵路運價為1.5元/(噸·千米),且這兩次運輸共支出公路運輸費14000元,鐵路運輸費87000元.
(1)求:該工廠從A地購買了多少噸原料?制成運往B地的產(chǎn)品多少噸?
(2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,雙曲線 與直線 交于點A(3,1).
(1)求直線和雙曲線的解析式;
(2)直線 與x軸交于點B,點P是雙曲線 上一點,過點P作直線PC∥x軸,交y軸于點C,交直線 于點D.若DC=2OB,直接寫出點 的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com