如圖,在邊長為2的等邊三角形ABC中,以B為圓心,AB為半徑作
AC
,在扇形BAC內(nèi)作⊙O與AB、BC、
AC
都相切,則⊙O的周長等于( 。
A.
4
9
π
B.
2
3
π
C.
4
3
π
D.π

連接OB并延長與
AC
交于點(diǎn)E,設(shè)AB與圓的切點(diǎn)為D,連接OD,
∵△ABC為等邊三角形,以B為圓心,AB為半徑作
AC

∴∠ABC=60°,BA=BC=BE=2,
由對稱性得到:∠ABE=30°,
∵AB為圓O的切線,
∴OD⊥AB,
在Rt△BOD中,∠ABE=30°,設(shè)OD=OE=x,
可得OB=2x,
∴OB+OE=BE,即2x+x=2,
解得:x=
2
3
,即圓O的半徑為
2
3
,
則圓O的周長為
4
3
π.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,A是⊙O上的一點(diǎn),AC為⊙O的切線,AB為弦,若∠B=59°,則∠BAC=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,∠DBC=∠BAC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,∠BAC=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,P是半圓O的直徑BC延長線上一點(diǎn),PA切半圓于點(diǎn)A,AH⊥BC于H,若PA=1,PB+PC=a(a>2),則PH等于(  )
A.
2
a
B.
1
a
C.
a
2
D.
a
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB、AC是⊙O的兩條切線,切點(diǎn)分別為B、C,D是優(yōu)弧BC上的一點(diǎn),已知∠BAC=80°,那么∠BDC=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是半圓O的直徑,C是半徑OA上一點(diǎn),PC⊥AB,點(diǎn)D是半圓上位于PC右側(cè)的一點(diǎn),連接AD交線段PC于點(diǎn)E,且PD=PE.
(1)求證:PD是⊙O的切線;
(2)若⊙O的半徑為4,PC=8,設(shè)OC=x,PD2=y.
①求y關(guān)于x的函數(shù)關(guān)系式;
②當(dāng)x=1時,求tan∠BAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,C、D是⊙O上的點(diǎn),∠CDB=30°,過點(diǎn)C作⊙O的切線交AB的延長線于E,則sin∠E的值為( 。
A.
1
2
B.
3
2
C.
2
2
D.
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA、PB是⊙O的切線,切點(diǎn)分別是A、B,若∠APB=60°,PA=4.求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AM切⊙O于點(diǎn)A,BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案