拋物線y=-x2+bx+c經(jīng)過點A、B、C,已知A(-1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.

【答案】分析:(1)由y=-x2+bx+c經(jīng)過點A、B、C,A(-1,0),C(0,3),利用待定系數(shù)法即可求得此拋物線的解析式;
(2)首先令-x2+2x+3=0,求得點B的坐標,然后設直線BC的解析式為y=kx+b′,由待定系數(shù)法即可求得直線BC的解析式,再設P(a,3-a),即可得D(a,-a2+2a+3),即可求得PD的長,由S△BDC=S△PDC+S△PDB,即可得S△BDC=-(a-2+,利用二次函數(shù)的性質(zhì),即可求得當△BDC的面積最大時,求點P的坐標;
(3)首先過C作CH⊥EF于H點,則CH=EH=1,然后分別從點M在EF左側(cè)與M在EF右側(cè)時去分析求解即可求得答案.
解答:解:(1)由題意得:,
解得:
∴拋物線解析式為y=-x2+2x+3;

(2)令-x2+2x+3=0,
∴x1=-1,x2=3,
即B(3,0),
設直線BC的解析式為y=kx+b′,

解得:,
∴直線BC的解析式為y=-x+3,
設P(a,3-a),則D(a,-a2+2a+3),
∴PD=(-a2+2a+3)-(3-a)=-a2+3a,
∴S△BDC=S△PDC+S△PDB
=PD•a+PD•(3-a)
=PD•3
=(-a2+3a)
=-(a-2+,
∴當a=時,△BDC的面積最大,此時P(,);

(3)由(1),y=-x2+2x+3=-(x-1)2+4,
∴OF=1,EF=4,OC=3,
過C作CH⊥EF于H點,則CH=EH=1,
當M在EF左側(cè)時,
∵∠MNC=90°,
則△MNF∽△NCH,

設FN=n,則NH=3-n,
,
即n2-3n-m+1=0,
關(guān)于n的方程有解,△=(-3)2-4(-m+1)≥0,
得m≥
當M在EF右側(cè)時,Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°,
作EM⊥CE交x軸于點M,則∠FEM=45°,
∵FM=EF=4,
∴OM=5,
即N為點E時,OM=5,
∴m≤5,
綜上,m的變化范圍為:-≤m≤5.
點評:此題考查了待定系數(shù)法求函數(shù)的解析式、相似三角形的判定與性質(zhì)、二次函數(shù)的最值問題、判別式的應用以及等腰直角三角形的性質(zhì)等知識.此題綜合性很強,難度較大,注意掌握數(shù)形結(jié)合思想、分類討論思想與方程思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經(jīng)過B、C兩點,點精英家教網(wǎng)A是拋物線與x軸的另一個交點.
(1)求拋物線的函數(shù)表達式;
(2)若點P在線段BC上,且S△PAC=
12
S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知x1、x2是拋物線y=x2-2(m-1)x+m2-7與x軸的兩個交點的橫坐標,且x12+x22=10.
求:(1)x1、x2的值;
(2)拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知一元二次方程-x2+bx+c=0的兩個實數(shù)根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代數(shù)式表示);
(2)設拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.若點D的坐標為(0,-2),且AD•BD=10,求拋物線的解析式及點C的坐標;
(3)在(2)中所得的拋物線上是否存在一點P,使得PC=PD?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知拋物線y=x2+bx+c的部分圖象如圖所示,若方程x2+bx+c=0有兩個同號的實數(shù)根,則c的值可以是
2
.(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、在平面直角坐標系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式是( 。

查看答案和解析>>

同步練習冊答案