已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點(diǎn)B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與y軸的交點(diǎn)為C,求△OCB的面積.
解:(1)由A(﹣2,0),得OA=2;
∵點(diǎn)B(2,n)在第一象限內(nèi),S△AOB=4,∴OA•n=4。∴n=4!帱c(diǎn)B的坐標(biāo)是(2,4)。
設(shè)該反比例函數(shù)的解析式為,
將點(diǎn)B的坐標(biāo)代入,得,∴m=8。
∴反比例函數(shù)的解析式為:。
設(shè)直線AB的解析式為y=kx+b(k≠0),
將點(diǎn)A,B的坐標(biāo)分別代入,得,解得,。
∴直線AB的解析式為y=x+2。
(2)在y=x+2中,令x=0,得y=2,∴點(diǎn)C的坐標(biāo)是(0,2)。∴OC=2。
∴S△OCB=OC×2=×2×2=2。
解析試題分析:(1)先由A(﹣2,0),得OA=2,點(diǎn)B(2,n),S△AOB=4,得OA•n=4,n=4,則點(diǎn)B的坐標(biāo)是(2,4),把點(diǎn)B(2,4)代入反比例函數(shù)的解析式為,可得反比例函數(shù)的解析式為:;再把A(﹣2,0)、B(2,4)代入直線AB的解析式為y=kx+b可得直線AB的解析式為y=x+2。
(2)把x=0代入直線AB的解析式y(tǒng)=x+2得y=2,即OC=2,可得S△OCB=OC×2=×2×2=2。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,一次函數(shù)的圖象與反比例函數(shù)(x>0)的圖象交于點(diǎn)P,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、點(diǎn)D,且S△DBP=27,.
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(3)根據(jù)圖象寫出當(dāng)x取何值時,一次函數(shù)的值小于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)M,N,已點(diǎn)M的坐標(biāo)為(1,3),點(diǎn)N的縱坐標(biāo)為-1.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)當(dāng)y1≥3時,求x的取值范圍;
(3)求使y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點(diǎn)A(2,3).
(1)求這個函數(shù)的解析式;
(2)判斷點(diǎn)B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(3)當(dāng)-3<x<-1時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)的圖象和矩形ABCD的第一象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)A的坐標(biāo)為(2,6) .
(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)若將矩形向下平移,矩形的兩個頂點(diǎn)恰好同時落在反比例函數(shù)的圖象上,猜想這是哪兩個點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)的圖象有一個交點(diǎn)A(m,2).
(1)求m的值;
(2)求正比例函數(shù)y=kx的解析式;
(3)試判斷點(diǎn)B(2,3)是否在正比例函數(shù)圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,直線y=k1x+b交x軸于點(diǎn)A(-3,0),交y軸于點(diǎn)B(0,2),并與的圖象在第一象限交于點(diǎn)C,CD⊥x軸,垂足為D,OB是△ACD的中位線。
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)若點(diǎn)是點(diǎn)C關(guān)于y軸的對稱點(diǎn),請求出△的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線AB與y軸、x軸分別交于點(diǎn)A、點(diǎn)B,與雙曲線交于點(diǎn)C(1,6)、D(3,n)兩點(diǎn),軸于點(diǎn)E,軸于點(diǎn)F.
(1)填空:,;
(2)求直線AB的解析式;
(3)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com