【題目】小明從家到圖書館看報然后返回,他離家的距離y與離家的時間x之間的對應(yīng)關(guān)系如圖所示,如果小明在圖書館看報30分鐘,那么他離家50分鐘時離家的距離為 km.
【答案】0.3.
【解析】
試題分析:方法一:由題意可得,小明從圖書館回家用的時間是:55﹣(10+30)=15分鐘,則小明回家的速度為:0.9÷15=0.06km/min,故他離家50分鐘時離家的距離為:0.9﹣0.06×[50﹣(10+30)]=0.3km,故答案為:0.3;
方法二:設(shè)小明從圖書館回家對應(yīng)的函數(shù)解析式為y=kx+b,則該函數(shù)過點(40,0.9),(55,0),∴,解得:,即小明從圖書館回家對應(yīng)的函數(shù)解析式為y=﹣0.06x+3.3,當x=50時,y=﹣0.06×50+3.3=0.3,故答案為:0.3.
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,∠B+∠D=180°,對角線AC平分∠BAD.
(1)如圖1,若∠DAB=120°,且∠B=90°,試探究邊AD、AB與對角線AC的數(shù)量關(guān)系并說明理由.
(2)如圖2,若將(1)中的條件“∠B=90°”去掉,(1)中的結(jié)論是否成立?請說明理由.
(3)如圖3,若∠DAB=90°,探究邊AD、AB與對角線AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下列各數(shù)為邊長,不能組成直角三角形的是( 。
A. 3,4,5 B. 4,5,6 C. 5,12,13 D. 6,8,10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,點M從點C出發(fā)沿CB方向以1cm/s的速度勻速運動,到達點B停止運動,在點M的運動過程中,過點M作直線MN交AC于點N,且保持∠NMC=45°,再過點N作AC的垂線交AB于點F,連接MF,將△MNF關(guān)于直線NF對稱后得到△ENF,已知AC=8cm,BC=4cm,設(shè)點M運動時間為t(s),△ENF與△ANF重疊部分的面積為y(cm2).
(1)在點M的運動過程中,能否使得四邊形MNEF為正方形?如果能,求出相應(yīng)的t值;如果不能,說明理由;
(2)求y關(guān)于t的函數(shù)解析式及相應(yīng)t的取值范圍;
(3)當y取最大值時,求sin∠NEF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學興趣小組在一次數(shù)學課外活動中,隨機抽查該校10名同學參加今年初中學業(yè)水平考試的體育成績,得到結(jié)果如下表所示:
下列說法正確的是( )
A.這10名同學體育成績的中位數(shù)為38分
B.這10名同學體育成績的平均數(shù)為38分
C.這10名同學體育成績的眾數(shù)為39分
D.這10名同學體育成績的方差為2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、G分別是邊AD、BC的中點,AF=AB.
(1)求證:EF⊥AG;
(2)若點F、G分別在射線AB、BC上同時向右、向上運動,點G運動速度是點F運動速度的2倍,EF⊥AG是否成立(只寫結(jié)果,不需說明理由)?
(3)正方形ABCD的邊長為4,P是正方形ABCD內(nèi)一點,當,求△PAB周長的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】復(fù)習課中,教師給出關(guān)于x的函數(shù)y=﹣2mx+m﹣1(m≠0).學生們在獨立思考后,給出了5條關(guān)于這個函數(shù)的結(jié)論: ①此函數(shù)是一次函數(shù),但不可能是正比例函數(shù);
②函數(shù)的值y 隨著自變量x的增大而減;
③該函數(shù)圖象與y軸的交點在y軸的正半軸上;
④若函數(shù)圖象與x軸交于A(a,0),則a<0.5;
⑤此函數(shù)圖象與直線y=4x﹣3、y軸圍成的面積必小于0.5.
對于以上5個結(jié)論是正確有( )個.
A.4
B.3
C.2
D.0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com